精英家教网 > 高中数学 > 题目详情
方程y=-
4-x2
对应的曲线是(  )
A、精英家教网
B、精英家教网
C、精英家教网
D、精英家教网
分析:根据解析式y=-
4-x2
可知图象在x轴下方,然后化简可知表示半圆,从而得到结论.
解答:解:∵y=-
4-x2
 y≤0
∴x2+y2=4
y=-
4-x2
表示x轴下方的半圆
故选A.
点评:本题主要考查了曲线与方程,同时考查了方程所表示的几何意义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网某高中地处县城,学校规定家到学校的路程在10里以内的学生可以走读,因交通便利,所以走读生人数很多.该校学生会先后5次对走读生的午休情况作了统计,得到如下资料:
①若把家到学校的距离分为五个区间:[0,2)、[2,4)、[4,6)、[6,8)、[8,10),则调查数据表明午休的走读生分布在各个区间内的频率相对稳定,得到了如图所示的频率分布直方图;
②走读生是否午休与下午开始上课的时间有着密切的关系.下表是根据5次调查数据得到的下午开始上课时间与平均每天午休的走读生人数的统计表.
下午开始上课时间 1:30 1:40 1:50 2:00 2:10
平均每天午休人数 250 350 500 650 750
(Ⅰ)若随机地调查一位午休的走读生,其家到学校的路程(单位:里)在[2,6)的概率是多少?
(Ⅱ)如果把下午开始上课时间1:30作为横坐标0,然后上课时间每推迟10分钟,横坐标x增加1,并以平均每天午休人数作为纵坐标y,试列出x与y的统计表,并根据表中的数据求平均每天午休人数
y
与上课时间x之间的线性回归方程
y
=bx+a;
(Ⅲ)预测当下午上课时间推迟到2:20时,家距学校的路程在6里路以上的走读生中约有多少人午休?
(注:线性回归直线方程系数公式b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a=
.
y
-b
.
x
.)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四种说法:
(1)命题:“存在x∈R,使得x2+1>3x”的否定是“对任意x∈R,都有x2+1≤3x”.
(2)若直线a、b在平面α内的射影互相垂直,则a⊥b.
(3)已知一组数据为20、30、40、50、60、70,则这组数据的众数、中位数、平均数的大小关系是:众数>中位数>平均数.
(4)已知回归方程
?
y
=4.4x+838.19
,则可估计x与y的增长速度之比约为
5
22

(5)若A(-2,3),B(3,-2),C(
1
2
,m)三点共线,则m的值为2.
其中所有正确说法的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

农科所对冬季昼夜温差大小与某反季节大豆新品种发芽量之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每月100颗种子中的发芽数,得到如下资料:
日期 12月1日 12月2日 12月3日 12月4日 12月5日
温差x(°C) 10 11 13 12 8
发芽数x(颗) 23 25 30 26 16
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,在对被选取的2组数据进行检查.
(Ⅰ)若选取的是12月1日语12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程
y
=bx+a;
(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性方程是可靠地,试问(Ⅰ)中所得到的线性方程是否可靠?
参考公式:
b
=
 
 
xiyi-n
.
x
.
y
 
 
x
2
i
-n
.
x2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学在生物研究性学习中想对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:
日期 4月1日 4月7日 4月15日 4月21日 4月30日
温差x/°C 10 11 13 12 8
发芽数y/颗 23 25 30 26 16
(1)从这5天中任选2天,记发芽的种子数分别为m,n,求事件“m,n均不小于25的概率.
(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y关于x的线性回归方程
?
y
=
?
b
x+
?
a

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(参考公式:
?
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
?
a
=
.
y
-
?
b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某产品连续4个月的广告费用xi(i=1,2,3,4)千元与销售额yi(i=1,2,3,4)万元,经过对这些数据的处理,得到如下数据信息:
①x1+x2+x3+x4=18,y1+y2+y3+y4=14;
②广告费用x和销售额y之间具有较强的线性相关关系;
③回归直线方程
?
y
=bx+a中的b=0.8(用最小二乘法求得);
那么,当广告费用为6千元时,可预测销售额约为(  )
A、3.5万元
B、4.7万元
C、4.9万元
D、6.5万元

查看答案和解析>>

同步练习册答案