精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:
(1)直线A1F∥平面ADE      
(2)AD⊥平面BCC1B1
分析:(1)在直三棱柱ABC-A1B1C1中,由D,E分别是棱BC,CC1上的点(点D不同于点C),知A1F∥AD,由此能证明A1F∥平面ADE.        
(2)在直三棱柱ABC-A1B1C1中,由A1B1=A1C1,F为B1C1的中点,知A1F⊥B1C1,故AD⊥BC,再由AD⊥DE,能够证明AD⊥平面BCC1B1
解答:证明:(1)在直三棱柱ABC-A1B1C1中,
∵D,E分别是棱BC,CC1上的点(点D不同于点C),
∴A1F∥AD,
∵A1F?平面ADE,AD?平面ADE,
∴A1F∥平面ADE.        
(2)在直三棱柱ABC-A1B1C1中,
∵A1B1=A1C1,F为B1C1的中点,
∴A1F⊥B1C1
∵B1C1∥BC,∴A1F⊥BC,
∵A1F∥AD,AD⊥DE,F为B1C1的中点,
∴AD⊥BC,
∴AD⊥平面BCC1B1
点评:本题考查直线与平面平行的证明,考查直线与平面垂直的证明,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案