精英家教网 > 高中数学 > 题目详情
定义域为R的偶函数f(x)在(0,+∞)上是增函数,且f(2)=0,则不等式xf(x)<0的解集为( )
A.{x|0<x<2}
B.{x|x<-2或0<x<2}
C.{x|-2<x<0}
D.{x|x<-2或x>2}
【答案】分析:根据函数的奇偶性单调性作出函数f(x)的草图,由图象即可求得不等式解集.
解答:解:作出满足条件的函数f(x)的草图如下:

由图象可得,不等式xf(x)<0??x<-2或0<x<2,
所以不等式xf(x)<0的解集为{x|x<-2或0<x<2}.
故选B.
点评:本题考查函数奇偶性、单调性及其应用,考查抽象不等式的求解,考查学生对数形结合思想的应用,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域为R的偶函数f(x)在[0,+∞)上是增函数,且f(
1
2
)=0
,则不等式f(log4x)>0的解集是
(  )
A、x|x>2
B、{x|0<x<
1
2
}
C、{x|0<x<
1
2
或x>2}
D、{x|
1
2
<x<1或x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的偶函数f(x)满足对?∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若方程f(x)=loga(x+1)在(0,+∞)上恰有三个不同的根,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•鹰潭一模)定义域为R的偶函数f(x)满足对?x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若函数y=f(x)-loga(|x|+1)在(0,+∞)上至多三个零点,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的偶函数f(x)在(0,+∞)上是增函数,且f(
1
2
)=0,则不等式f(log2x)>0的解是
(0,
2
2
)∪(
2
,+∞)
(0,
2
2
)∪(
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区一模)已知定义域为R的偶函数f(x)在(-∞,0]上是减函数,且f(
12
)=2,则不等式f(2x)>2的解集为
(-1,+∞)
(-1,+∞)

查看答案和解析>>

同步练习册答案