(08年鹰潭市一模理)(12分)已知斜三棱柱
,
,
,
在底面
上的射影恰为
的中点
,又知
.
(Ⅰ)求证:
平面
;
(Ⅱ)求
到平面
的距离;
(Ⅲ)求二面角
的大小.
解析:解法
:(Ⅰ)∵
平面
,∴平面
平面
,
又
,∴
平面
, 得
,又
,
∴
平面
.…………………4分
(Ⅱ)∵
,四边形
为菱形,故
,
又
为
中点,知∴
.取
中点
,则
平面
,从而面
面
,…………6分
过
作
于
,则
面
,在
中,
,故
,即
到平面
的距离为
.…………………8分
(Ⅲ)过
作
于
,连
,则
,从而
为二面角
的平面角,在
中,
,∴
,…………10分
在
中,
,故二面角
的大小为
.
…………………12分
解法
:(Ⅰ)如图,取
的中点
,则
,∵
,∴
,
又
平面
,以
为
轴建立空间坐标系, …………1分
则
,
,
,
,
,
,
,
,由
,知
,
又
,从而
平面
.…………………4分
(Ⅱ)由
,得
.设平面
的法向量
为
,
,
,
,
设
,则
.…………6分
∴点
到平面
的距离
.…………………8分
(Ⅲ)设面
的法向量为
,
,
,
∴
.…………10分
设
,则
,故
,根据法向量的方向
可知二面角
的大小为
.…………………12分
![]()
![]()
科目:高中数学 来源: 题型:
(08年鹰潭市一模理)(14分)已知函数
满足
,
,
;且使
成立的实数
只有一个。
(Ⅰ)求函数
的表达式;
(Ⅱ)若数列
满足
,![]()
,
,
,证明数列
是等比数列,并求出
的通项公式;
(Ⅲ)在(Ⅱ)的条件下,如果
,
,证明:
,
。
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年鹰潭市一模理) (12分)在一次语文测试中,有一道我国四大文学名著《水浒传》、《三国演义》、《西游记》、《红楼梦》与它们的作者的连线题,已知连对一个得2分,连错一个不得分.
(Ⅰ)求该同学得分的分布列;
(Ⅱ)求该同学得分的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年鹰潭市一模理) 已知
为第二象限角,且
,那么
的取值范围是( )
A. ( -1 ,0 ) B. ( 1 ,
) C. ( -1 ,1 ) D. ( -
,-1 )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com