【题目】已知圆
的圆心在坐标原点,且与直线
相切.
(1)求直线
被圆
所截得的弦
的长;
(2)过点
作两条与圆
相切的直线,切点分别为
求直线
的方程;
(3)若与直线
垂直的直线
与圆
交于不同的两点
,若
为钝角,求直线
在
轴上的截距的取值范围.
【答案】(1)
;(2)
;(3)
,且
.
【解析】【试题分析】(1)依据题设先求圆的半径和方程,再运用弦心距、半弦长、半径之间的关系进行分析求解;(2)依据题设条件构造圆以
的方程,再运用两圆的相交弦所在直线即为所求;(3)依据题设条件借助题设条件“
为钝角”建立不等式分析探求:
(1)由题意得:圆心
到直线
的距离为圆的半径,
,所以圆
的标准方程为:
所以圆心到直线
的距离
(2)因为点
,所以
,![]()
所以以
点为圆心,线段
长为半径的圆
方程:
(1)
又圆
方程为:
(2),由
得直线
方程:span>
(3)设直线
的方程为:
联立
得:
,
设直线
与圆的交点
,
由
,得
,
(3)
因为
为钝角,所以
,
即满足
,且
与
不是反向共线,
又
,所以
(4)
由(3)(4)得
,满足
,即
,
当
与
反向共线时,直线
过原点,此时
,不满足题意,
故直线
在
轴上的截距的取值范围是
,且![]()
科目:高中数学 来源: 题型:
【题目】a、b、c为三条不重合的直线,α、β、γ为三个不重合的平面,现给出六个命题.
①
a∥b; ②
a∥b; ③
α∥β;
④
α∥β; ⑤
a∥α; ⑥
a∥α,
其中正确的命题是________.(填序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】不等式|x﹣
≤
的解集为{x|n≤x≤m}
(1)求实数m,n;
(2)若实数a,b满足:|a+b|<m,|2a﹣b|<n,求证:|b|<
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,离心率为
.
(1)求椭圆的方程;
(2)设直线
与椭圆相交于
,
两点,
,
分别为线段
,
的中点,若坐标原点
在以
为直径的圆上,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(其中
),若
的一条对称轴离最近的对称中心的距离为
.
(Ⅰ)求
的单调递增区间;
(Ⅱ)在
中角
、
、
的对边分别是
满足
恰是
的最大值,试判断
的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,SA=SB=AB=BC=CA=6,且侧面ASB⊥底面ABC,则三棱锥S-ABC外接球的表面积为( )
![]()
A. 60π B. 56π C. 52π D. 48π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合M={m|m∈Z,且|m|≤2018},M的子集S满足:对S中任意3个元素a,b,c(不必不同),都有a+b+c≠0.求集合S的元素个数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设首项为1的正项数列{an}的前n项和为Sn , 且Sn+1﹣3Sn=1.
(1)求证:数列{an}为等比数列;
(2)数列{an}是否存在一项ak , 使得ak恰好可以表示为该数列中连续r(r∈N* , r≥2)项的和?请说明理由;
(3)设
,试问是否存在正整数p,q(1<p<q)使b1 , bp , bq成等差数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
(1)设f(x)与g(x)是定义在R上的两个函数,若|f(x1)+f(x2)|≥|g(x1)+g(x2)|恒成立,且f(x)为奇函数,则g(x)也是奇函数;
(2)若x1 , x2∈R,都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|成立,且函数f(x)在R上递增,则f(x)+g(x)在R上也递增;
(3)已知a>0,a≠1,函数f(x)=
,若函数f(x)在[0,2]上的最大值比最小值多
,则实数a的取值集合为
;
(4)存在不同的实数k,使得关于x的方程(x2﹣1)2﹣|x2﹣1|+k=0的根的个数为2个、4个、5个、8个.则所有正确命题的序号为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com