【题目】函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为( ) ![]()
A.y=2sin(2x+
)
B.y=2sin(2x+
)
C.y=2sin(
﹣
)
D.y=2sin(2x﹣
)
科目:高中数学 来源: 题型:
【题目】某校随机抽取100名学生调查寒假期间学生平均每天的学习时间,被调查的学生每天用于学习的时间介于1小时和11小时之间,按学生的学习时间分成5组:第一组[1,3),第二组[3,5),第三组[5,7),第四组[7,9),第五组[9,11],绘制成如图所示的频率分布直方图.
(Ⅰ)求学习时间在[7,9)的学生人数;
(Ⅱ)现要从第三组、第四组中用分层抽样的方法抽取6人,从这6人中随机抽取2人交流学习心得,求这2人中至少有1人的学习时间在第四组的概率.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
已知极坐标系的极点
与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为
(
为参数,
),直线
,若直线
与曲线C相交于A,B两点,且
.
(Ⅰ)求
;
(Ⅱ)若M,N为曲线C上的两点,且
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中, 曲线
的参数方程为
为参数) ;在以原点
为极点,
轴的正半轴为极轴的极坐标系中, 曲线
的极坐标参数方程为
.
(1)求曲线
的极坐标方程和曲线
的直角坐标方程;
(2)若射线
与曲线
,
的交点分别为
(
异于原点). 当斜率
时, 求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}的前n项和为Sn , 若对于任意的正整数n都有Sn=2an﹣3n.
(1)设bn=an+3,求证:数列{bn}是等比数列,并求出{an}的通项公式;
(2)求数列{nan}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=Asin(ωx+)(A,ω,是常数,A>0,ω>0)的部分图象如图所示,下列结论: ①最小正周期为π;
②将f(x)的图象向左平移
个单位,所得到的函数是偶函数;
③f(0)=1;
④
;
⑤
.
其中正确的是( )![]()
A.①②③
B.②③④
C.①④⑤
D.②③⑤
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C方程为
(a>b>0),左、右焦点分别是F1 , F2 , 若椭圆C上的点P(1,
)到F1 , F2的距离和等于4. (Ⅰ)写出椭圆C的方程和焦点坐标;
(Ⅱ)设点Q是椭圆C的动点,求线段F1Q中点T的轨迹方程;
(Ⅲ)直线l过定点M(0,2),且与椭圆C交于不同的两点A,B,若∠AOB为锐角(O为坐标原点),求直线l的斜率k0的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
,半径为
的圆
与
相切,圆心
在
轴上且在直线
的上方.
(Ⅰ)求圆
的标准方程;
(Ⅱ)过点
的直线与圆
交于
两点(
在
轴上方),问在
轴正半轴上是否存在点
,使得
轴平分
?若存在,请求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com