精英家教网 > 高中数学 > 题目详情
设F1、F2分别双曲线的左、右焦点,若双曲线右支上存在一点P满足,则双曲线的渐近线方程为( )
A.3x±4y=0
B.3x±5y=0
C.4x±3y=0
D.5x±4y=0
【答案】分析:利用题设条件和双曲线性质在三角形中寻找等量关系,得出a与b之间的等量关系,从而得出正确答案.
解答:解:依题意|PF2|=|F1F2|,可知三角形PF2F1是一个等腰三角形,F2在直线PF1的投影A是线段PF1中点,
由勾股定理知可知|PF1|=2|F1A|=2|F1F2|cos∠PF1F2=2×2c×=
根据双曲定义可知|PF1|-|PF2|=2a,
-2c=2a,整理得c=a,代入c2=a2+b2整理得4b=3a,求得=
∴双曲线渐近线方程为y=±x,即3x±4y=0
故选A.
点评:本题主要考查双曲线的简单性质、三角与双曲线的相关知识点,突出了对计算能力和综合运用知识能力的考查,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1、F2分别双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,若双曲线右支上存在一点P满足|PF2|=|F1F2|,且cos∠PF1F2=
4
5
,则双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宝山区模拟)双曲线C:
x2
a2
-
y2
b2
=1
上一点(2,
3
)
到左,右两焦点距离的差为2.
(1)求双曲线的方程;
(2)设F1,F2是双曲线的左右焦点,P是双曲线上的点,若|PF1|+|PF2|=6,求△PF1F2的面积;
(3)过(-2,0)作直线l交双曲线C于A,B两点,若
OP
=
OA
+
OB
,是否存在这样的直线l,使OAPB为矩形?若存在,求出l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2为双曲线的左、右焦点,P为双曲线右支上任一点,若
PF12PF2
的最小值恰是实轴长的4倍,则该双曲线离心率的取值范围是
(1,3]
(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设F1、F2分别双曲线数学公式的左、右焦点,若双曲线右支上存在一点P满足数学公式,则双曲线的渐近线方程为


  1. A.
    3x±4y=0
  2. B.
    3x±5y=0
  3. C.
    4x±3y=0
  4. D.
    5x±4y=0

查看答案和解析>>

同步练习册答案