精英家教网 > 高中数学 > 题目详情
定义在[-1,1]上的奇函数,若m,n∈[-1,1],m+n≠0时有
f(m)+f(n)
m+n
>0
,则不等式f(x+
1
2
)+f(2x-1)<0
的解集是______.
∵定义在[-1,1]上的奇函数,若m,n∈[-1,1],m+n≠0时有
f(m)+f(n)
m+n
>0

∴m+n>0时,f(m)+f(n)>0或m+n<0时,f(m)+f(n)<0
∴m>-n时,f(m)>-f(n)=f(-n)或m<-n时,f(m)<-f(n)=f(-n)
∴定义在[-1,1]上的奇函数单调递增
f(x+
1
2
)+f(2x-1)<0

f(x+
1
2
)<-f(2x-1)

f(x+
1
2
)<f(-2x+1)

-1≤x+
1
2
≤1
-1≤-2x+1≤1
x+
1
2
<-2x+1

0≤x<
1
6

∴不等式的解集为{x|0≤x<
1
6
}.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在[-1,1]上的奇函数,且其图象上任意两点连线的斜率均小于零.
(1)证明f(x)在[-1,1]上是减函数;
(2)如果f(x-c),f(x-c2)的定义域的交集为空集,求实数c的取值范围;
(3)证明:若-1≤c≤2,则f(x-c),f(x-c2)存在公共的定义域,并求出这个公共的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在[-1,1]上的奇函数f(x),当-1≤x<0时,f(x)=-
2x
4x+1

(Ⅰ)求f(x)在[-1,1]上解析式;
(Ⅱ)判断f(x)在(0,1)上的单调性,并给予证明;
(Ⅲ)当x∈(0,1]时,关于x的方程
2x
f(x)
-2x+λ=0
有解,试求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)是定义在[-1,1]上的奇函数,且其图象上任意两点连线的斜率均小于零.
(1)证明f(x)在[-1,1]上是减函数;
(2)如果f(x-c),f(x-c2)的定义域的交集为空集,求实数c的取值范围;
(3)证明:若-1≤c≤2,则f(x-c),f(x-c2)存在公共的定义域,并求出这个公共的定义域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设f(x)是定义在[-1,1]上的奇函数,且其图象上任意两点连线的斜率均小于零.
(1)证明f(x)在[-1,1]上是减函数;
(2)如果f(x-c),f(x-c2)的定义域的交集为空集,求实数c的取值范围;
(3)证明:若-1≤c≤2,则f(x-c),f(x-c2)存在公共的定义域,并求出这个公共的定义域.

查看答案和解析>>

科目:高中数学 来源:江苏省泰州市中学高三数学一轮复习过关测试卷:函数(1)(解析版) 题型:解答题

设f(x)是定义在[-1,1]上的奇函数,且其图象上任意两点连线的斜率均小于零.
(1)证明f(x)在[-1,1]上是减函数;
(2)如果f(x-c),f(x-c2)的定义域的交集为空集,求实数c的取值范围;
(3)证明:若-1≤c≤2,则f(x-c),f(x-c2)存在公共的定义域,并求出这个公共的定义域.

查看答案和解析>>

同步练习册答案