【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,曲线
的参数方程为
(
,
为参数),在以
为极点,
轴的正半轴为极轴的极坐标系中,曲线
是圆心在极轴上,且经过极点的圆.已知曲线
上的点
对应的参数
,射线
与曲线
交于点
.
(Ⅰ)求曲线
,
的标准方程;
(Ⅱ)若点
,
在曲线
上,求
的值.
科目:高中数学 来源: 题型:
【题目】动圆M与定圆C:x2+y2+4x=0相外切,且与直线l:x-2=0相切,则动圆M的圆心的轨迹方程为( )
A. y2-12x+12=0 B. y2+12x-12=0
C. y2+8x=0 D. y2-8x=0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 数列{bn},{cn}满足 (n+1)bn=an+1﹣
,(n+2)cn=
﹣
,其中n∈N*.
(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;
(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn , 求证:数列{an}是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某抛掷骰子游戏中,规定游戏者可以有三次机会抛掷一颗骰子,若游戏者在前两次抛掷中至少成功一次才可以进行第三次抛掷,其中抛掷骰子不成功得0分,第1次成功得3分,第2次成功得3分,第3次成功得4分.游戏规则如下:抛掷1枚骰子,第1次抛掷骰子向上的点数为奇数则记为成功,第2次抛掷骰子向上的点数为3的倍数则记为成功,第3次抛掷骰子向上的点数为6则记为成功.用随机变量
表示该游戏者所得分数.
(1)求该游戏者有机会抛掷第3次骰子的概率;
(2)求随机变量
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率等于
.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0,表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 将1至
这
个自然数随机填入n×n方格的
个方格中,每个方格恰填一个数(
).对于同行或同列的每一对数,都计算较大数与较小数的比值,在这
个比值中的最小值,称为这一填数法的“特征值”.
(1)若
,请写出一种填数法,并计算此填数法的“特征值”;
(2)当
时,请写出一种填数法,使得此填数法的“特征值”为
;
(3)求证:对任意一个填数法,其“特征值”不大于
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
的导函数为
.若不等式
对任意实数x恒成立,则称函数
是“超导函数”.
(1)请举一个“超导函数” 的例子,并加以证明;
(2)若函数
与
都是“超导函数”,且其中一个在R上单调递增,另一个在R上单调递减,求证:函数
是“超导函数”;
(3)若函数
是“超导函数”且方程
无实根,
(e为自然对数的底数),判断方程
的实数根的个数并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个口袋里装有
个白球和
个红球,从口袋中任取
个球.
(1)共有多少种不同的取法?
(2)其中恰有一个红球,共有多少种不同的取法?
(3)其中不含红球,共有多少种不同的取法?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com