精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),在以为极点,轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点.

(Ⅰ)求曲线的标准方程;

(Ⅱ)若点在曲线上,求的值.

【答案】() ()

【解析】分析:()把及对应的参数,代入曲线,化简解出即可;设圆的半径为,由题意,圆的方程,把点代入,再利用互化公式化简即可;

)把两点代入曲线,化简整理即可.

详解:(Ⅰ)将及对应的参数,代入

解得

曲线的参数方程为为参数),曲线的标准方程为.

设圆的半径为,由题意,圆的方程,即.

将点代入,得,即

所以曲线的标准方程为.

(Ⅱ)因为点在曲线上,

所以

所以 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】动圆M与定圆C:x2+y2+4x=0相外切,且与直线l:x-2=0相切,则动圆M的圆心的轨迹方程为(  )

A. y2-12x+12=0 B. y2+12x-12=0

C. y2+8x=0 D. y2-8x=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 数列{bn},{cn}满足 (n+1)bn=an+1 ,(n+2)cn= ,其中n∈N*.
(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;
(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn , 求证:数列{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某抛掷骰子游戏中,规定游戏者可以有三次机会抛掷一颗骰子若游戏者在前两次抛掷中至少成功一次才可以进行第三次抛掷,其中抛掷骰子不成功得0分,第1次成功得3分,第2次成功得3分,第3次成功得4.游戏规则如下:抛掷1枚骰子,第1次抛掷骰子向上的点数为奇数则记为成功,第2次抛掷骰子向上的点数为3的倍数则记为成功,第3次抛掷骰子向上的点数为6则记为成功.用随机变量表示该游戏者所得分数.

(1)求该游戏者有机会抛掷第3次骰子的概率;

(2)求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率等于 .现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生09之间取整数值的随机数,指定1234表示命中,567890,表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数的最大值是最小值的倍,求实数的值;

(2)若函数存在零点,求函数的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 1个自然数随机填入n×n方格的个方格中,每个方格恰填一个数().对于同行或同列的每一对数,都计算较大数与较小数的比值,在这个比值中的最小值,称为这一填数法的特征值”.

(1),请写出一种填数法,并计算此填数法的特征值”;

(2)时,请写出一种填数法,使得此填数法的特征值

(3)求证:对任意一个填数法,其特征值不大于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的导函数为.若不等式对任意实数x恒成立,则称函数超导函数”.

(1)请举一个超导函数的例子,并加以证明;

(2)若函数都是超导函数,且其中一个在R上单调递增,另一个在R上单调递减,求证:函数超导函数”;

(3)若函数超导函数且方程无实根(e为自然对数的底数),判断方程的实数根的个数并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个口袋里装有个白球和个红球,从口袋中任取个球.

(1)共有多少种不同的取法?

(2)其中恰有一个红球,共有多少种不同的取法?

(3)其中不含红球,共有多少种不同的取法?

查看答案和解析>>

同步练习册答案