【题目】如图,多面体
是正三棱柱(底面是正三角形的直棱柱)
沿平面
切除一部分所得,其中平面
为原正三棱柱的底面,
,点D为
的中点.
![]()
(1)求证:
平面
;
(2)求二面角
的平面角的余弦值.
【答案】(1)证明见解析;(2)
.
【解析】
(1)设
与
交于点E,连接
、
,由题意可得四边形
是正方形,且
,再由点D为
的中点,
平行且等于
,求得CD,同理求得
,得
,可得
,由线面垂直的判定可得;
(2)取BC的中点O,连接AO,可得AO⊥BC,由正棱柱的性质可得AO⊥平面
,以O为坐标原点,向量
、
、
分别为x、y,z轴建立空间直角坐标系,分别求出平面CBD与平面
的一个法向量,由两法向量所成角的余弦值可得二面角
的平面角的余弦值.
(1)设
与
交于点E,连接
、
.
∵多面体
是正三棱柱沿平面
切除部分所得,
,
∴四边形
是正方形,且
.
∵点D为
的中点,
平行且等于
,
∴
.
同理
,
∴
.
∵E为
的中点,
∴
.
又∵
,
,
∴
平面
;
![]()
(2)取
的中点O,连接
.
∵
为正三角形,
.
由正棱柱的性质可得,平面
平面
,
且平面
平面
,
∴
平面
.
以点O为原点,向量
、
、
分别为x、y,z轴正方向建立如图所示空间直角坐标系
.
则
,
,
,
,
,
,
.
设平面
的一个法向量为
,
则
,
令
,得
,
,即
.
由(1)可知,平面
的一个法向量为
.
,
又∵二面角
的平面角为锐角,
∴二面角
的平面角的余弦值为
.
科目:高中数学 来源: 题型:
【题目】某地拟建造一座大型体育馆,其设计方案侧面的外轮廓如图所示,曲线
是以点
为圆心的圆的一部分,其中
;曲线
是抛物线
的一部分;
,且
恰好等于圆
的半径.假定拟建体育馆的高
(单位:米,下同).
![]()
(1)若
,
,求
、
的长度;
(2)若要求体育馆侧面的最大宽度
不超过
米,求
的取值范围;
(3)若
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABCA1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2,
=λ
.
![]()
(1)若λ=1,求直线DB1与平面A1C1D所成角的正弦值;
(2)若二面角B1- A1C1-D的大小为60°,求实数λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某品牌奶茶公司计划在A地开设若干个连锁加盟店,经调查研究,加盟店的个数x与平均每个店的月营业额y(万元)具有如下表所示的数据关系:
x | 2 | 4 | 6 | 8 | 10 |
y | 20.9 | 20.2 | 19 | 17.8 | 17.1 |
(1)求y关于x的线性回归方程;
(2)根据(1)中的结果分析,为了保证平均每个加盟店的月营业额不少于14.6万元,则A地开设加盟店的个数不能超过几个?
参考公式:线性回归方程
中的斜率和截距的最小二乘估计公式分别为
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为坐标原点,椭圆
:
的焦距为
,直线
截圆
:
与椭圆
所得的弦长之比为
,椭圆
与
轴正半轴的交点分别为
.
(1)求椭圆
的标准方程;
(2)设点
(
且
)为椭圆
上一点,点
关于
轴的对称点为
,直线
,
分别交
轴于点
,
.试判断
是否为定值?若是求出该定值,若不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图(1),函数
的图象与x轴围成一个封闭区域A(阴影部分),将区域A(阴影部分)沿z轴的正方向上移6个单位,得到一几何体.现有一个与之等高的底面为椭圆的柱体如图(2)所示,其底面积与区域A(阴影部分)的面积相等,则此柱体的体积为______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥
中,BO、AO、CO所在直线两两垂直,且AO=CO,∠BAO=60°,E是AC的中点,三棱锥
的体积为![]()
![]()
(1)求三棱锥
的高;
(2)在线段AB上取一点D,当D在什么位置时,
和
的夹角大小为 ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】华为董事会决定投资开发新款软件,估计能获得
万元到
万元的投资收益,讨论了一个对课题组的奖励方案:奖金
(单位:万元)随投资收益
(单位:万元)的增加而增加,且奖金不超过
万元,同时奖金不超过投资收益的
.
(1)请分析函数
是否符合华为要求的奖励函数模型,并说明原因;
(2)若华为公司采用模型函数
作为奖励函数模型,试确定正整数
的取值集合.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com