【题目】袋子中有四个小球,分别写有“文、明、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“文、明、中、国”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:
232 321 230 023 123 021 132 220 001
231 130 133 231 013 320 122 103 233
由此可以估计,恰好第三次就停止的概率为( )
A.
B.
C.
D.![]()
科目:高中数学 来源: 题型:
【题目】为了解全市统考情况,从所有参加考试的考生中抽取4000名考生的成绩,频率分布直方图如下图所示.
![]()
(1)求这4000名考生的半均成绩
(同一组中数据用该组区间中点作代表);
(2)由直方图可认为考生考试成绩z服从正态分布
,其中
分别取考生的平均成绩
和考生成绩的方差
,那么抽取的4000名考生成绩超过84.81分(含84.81分)的人数估计有多少人?
(3)如果用抽取的考生成绩的情况来估计全市考生的成绩情况,现从全市考生中随机抽取4名考生,记成绩不超过84.81分的考生人数为
,求
.(精确到0.001)
附:①
;
②
,则
;
③
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
两个居民小区的居委会欲组织本小区的中学生,利用双休日去市郊的敬老院参加献爱心活动.两个校区每位同学的往返车费及服务老人的人数如下表:
|
| |
往返车费 | 3元 | 5元 |
服务老人的人数 | 5人 | 3人 |
根据安排,去敬老院的往返总车费不能超过37元,且
小区参加献爱心活动的同学比
小区的同学至少多1人,则接受服务的老人最多有____人.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“科技引领,布局未来”科技研发是企业发展的驱动力量。
年,某企业连续
年累计研发投入搭
亿元,我们将研发投入与经营投入的比值记为研发投入占营收比,这
年间的研发投入(单位:十亿元)用右图中的折现图表示,根据折线图和条形图,下列结论错误的使( )
![]()
A.
年至
年研发投入占营收比增量相比
年至
年增量大
B.
年至
年研发投入增量相比
年至
年增量小
C. 该企业连续
年研发投入逐年增加
D. 该企业来连续
年来研发投入占营收比逐年增加
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,焦距为
.斜率为k的直线l与椭圆M有两个不同的交点A,B.
(Ⅰ)求椭圆M的方程;
(Ⅱ)若
,求
的最大值;
(Ⅲ)设
,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点
共线,求k.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知矩形
,
,
,将
沿矩形的对角线
所在的直线进行翻折,在翻折过程中,则( ).
A. 当
时,存在某个位置,使得![]()
B. 当
时,存在某个位置,使得![]()
C. 当
时,存在某个位置,使得![]()
D.
时,都不存在某个位置,使得![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的右焦点为
,离心率为
,
是椭圆
上位于第一象限内的任意一点,
为坐标原点,
关于
的对称点为
,
,圆
:
.
![]()
(1)求椭圆
和圆
的标准方程;
(2)过点
作
与圆
相切于点
,使得点
,点
在
的两侧.求四边形
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com