精英家教网 > 高中数学 > 题目详情
(2013•金山区一模)若实数a、b、c成等差数列,点P(-1,0)在动直线l:ax+by+c=0上的射影为M,点N(0,3),则线段MN长度的最小值是
4-
2
4-
2
分析:由题意可得动直线l:ax+by+c=0过定点Q(1,-2),PMQ=90°,点M在以PQ为直径的圆上,求出圆心为PQ的中点C(0,-1),且半径为
2
.求得点N到圆心C的距离,
再减去半径,即得所求.
解答:解:因为a,b,c成等差数列,故有2b=a+c,即a-2b+c=0,对比方程ax+by+c=0可知,动直线恒过定点Q(1,-2).
由于点P(-1,0)在动直线ax+by+c=0上的射影为M,即∠PMQ=90°,所以点M在以PQ为直径的圆上,该圆的圆心为PQ的中点C(0,-1),且半径为
PQ
2
=
2

再由点N到圆心C的距离为 NC=4,所以线段MN的最小值为 NC-r=4-
2

故答案为 4-
2
点评:本题主要考查等差数列的性质,直线过定点问题、圆的定义,以及点与圆的位置关系,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•金山区一模)若复数(1+2i)(1+ai)是纯虚数,则实数a的值是
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•金山区一模)计算极限:
lim
n→∞
(
2n2-2
n2+n+1
)
=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•金山区一模)已知函数f(x)=sin(2x+
π
3
)+sin(2x-
π
3
)+
3
cos2x-m
,若f(x)的最大值为1.
(1)求m的值,并求f(x)的单调递增区间;
(2)在△ABC中,角A、B、C的对边a、b、c,若f(B)=
3
-1
,且
3
a=b+c
,试判断三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•金山区一模)若函数y=f(x) (x∈R)满足:f(x+2)=f(x),且x∈[-1,1]时,f(x)=|x|,函数y=g(x)是定义在R上的奇函数,且x∈(0,+∞)时,g(x)=log 3x,则函数y=f(x)的图象与函数y=g(x)的图象的交点个数为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•金山区一模)若
1
a
1
b
<0
,则下列结论不正确的是(  )

查看答案和解析>>

同步练习册答案