精英家教网 > 高中数学 > 题目详情
x是x的方程ax=logax(0<a<1)的解,则x,1,a这三个数的大小关系是   
【答案】分析:显然方程ax=logax不能用代数方法研究.利用数形结合的思想,先分别作函数y=ax及y=logax的图象,如图,它们的交点为P(x,y),结合图形得出结论即可.
解答:解:根据题意,分别作函数y=ax及y=logax的图象
如图,它们的交点为P(x,y),易见x<1,y<1,
而y=ax=logax即logax<1,又0<a<1,
∴x>a,即a<x<1.
故答案为:a<x<1.
点评:本题查图象法求方程根的问题,对于本题这样的特殊方程解的问题通常是借助相关的函数图象交点的问题来研究.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y-29=0相切.
(1)求圆的方程;
(2)若直线ax-y+5=0(a≠0)与圆相交于A,B两点,是否存在实数a,使得过点P(-2,4)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y-29=0相切.
(Ⅰ)求圆的方程;
(Ⅱ)设直线ax-y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(-2,4),若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福州模拟)函数f(x)=x3+ax(x∈R)在x=l处有极值,则曲线y=f(x)在原点处的切线方程是
3x+y=0
3x+y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+
2
x
+6
,其中a为实常数.
(1)若f(x)>3x在(1,+∞)上恒成立,求a的取值范围;
(2)已知a=
3
4
,P1,P2是函数f(x)图象上两点,若在点P1,P2处的两条切线相互平行,求这两条切线间距离的最大值;
(3)设定义在区间D上的函数y=s(x)在点P(x0,y0)处的切线方程为l:y=t(x),当x≠x0时,若
s(x)-t(x)
x-x0
>0
在D上恒成立,则称点P为函数y=s(x)的“好点”.试问函数g(x)=x2f(x)是否存在“好点”.若存在,请求出所有“好点”坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•厦门模拟)本小题设有(1)(2)(3)三个选考题,每题7分,请考生任选两题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知e1=
1
1
是矩阵M=
a
 1
0
 b
属于特征值λ1=2的一个特征向量.
(I)求矩阵M;
(Ⅱ)若a=
2
1
,求M10a.
(2)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,A(l,0),B(2,0)是两个定点,曲线C的参数方程为
AB
为参数).
(I)将曲线C的参数方程化为普通方程;
(Ⅱ)以A(l,0为极点,|
AB
|为长度单位,射线AB为极轴建立极坐标系,求曲线C的极坐标方程.
(3)选修4-5:不等式选讲
(I)试证明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(a,b,x,y∈R);
(Ⅱ)若x2+y2=2,且|x|≠|y|,求
1
(x+y
)
2
 
+
1
(x-y
)
2
 
的最小值.

查看答案和解析>>

同步练习册答案