精英家教网 > 高中数学 > 题目详情
(2010•武汉模拟)已知函数f(x)=
1+x
+
1-x

(1)求函数f(x)的单调区间;
(2)是否存在正常数α,使不等式
1+x
+
1-x
≤2-
x2
α
在0≤x≤1
恒成立?如果存在,求出最小正数α,否则请说明理由.
分析:(1)利用函数单调性与导数关系,对f(x)求导后,再求解即可.
(2)令
1+x
+
1-x
=t,则x2=1-
1
4
(t2-2)2
,又0≤x≤1,则
2
≤t≤2,因此要使
1+x
+
1-x
≤2-
x2
a
恒成立.
只需1-
1
4
(t2-2)2≤a(2-t)在
2
≤t≤2恒成立①.
法1:构造函数g(t)=(t2-2)2-4α(t-2)-4≥0,在
2
≤t≤2上恒成立,利用单调性求出g(t)的最小值,令其大于等于0.
法2:对①式中的α进行参数分离,当t=2时,显然成立当
2
≤t<
2
时,只需α≥
1-
1
4
(t2-2)2
2-t
=
1
4
t2
(t+2)恒成立,再求出相应函数的最小值作比较.
解答:解:(1)由f(x)=
1+x
+
1-x
知其定义域为:-1≤x≤1
求导数得到f'(x)=
1
2
1
1+x
-
1
1-x

 令f'(x)=0得到:x=0
1
1-x

在0≤x<1时,f'(x)≤0
在-1<x≤1时,f'(x)≥0
因此f(x)在[0,1]上为减函数,在[-1,0]上为增函数  …(6分)
(2)方法一:令
1+x
+
1-x
=t,则x2=1-
1
4
(t2-2)2
,又0≤x≤1,则
2
≤t≤2
因此要使
1+x
+
1-x
≤2-
x2
a
恒成立.
只需1-
1
4
(t2-2)2≤a(2-t)在
2
≤t≤2恒成立.
即需g(t)=(t2-2)2-4α(t-2)-4≥0在t∈[
2
,2]上恒成立.只需g(t)的最小值大于等于0
而g'(t)=4[t(t2-2)-α]在
2
≤t≤2上单调递增.
于是:g'(
2
)≤g'(t)≤g'(2)
g'(
2
)=-4α<0.g'(2)=16-α
若g'(2)=16-α≤0,α≥4,则g(t)在t∈[
2
,2]上为减函数.g(t)的最小值 g(2)=0,符合要求.
若g'(2)=16-α>0,g(t)=(t2-2)2-4α(t-2)-4在t∈[
2
,2]上先减后增. 
 又∵g(2)=0,存在t0,g(t0)<0,不合题意.
因此存在这样的正常数α,且求得α的最小值为4.  …(13分)
方法二:由解法1知只需1-
1
4
(t2-2)2≤α(2-t)在
2
≤t≤2上恒成立
当t=2时,显然成立当
2
≤t<
2
时,只需α≥
1-
1
4
(t2-2)2
2-t
=
1
4
t2
(t+2)恒成立,
1
4
t2(t+2)<
1
4
22
(2+2)=4∴α≥4
即α最小值为4.   …(13分)
点评:本题考查了用函数单调性与导数关系,求单调区间,求最值.考查不等式恒成立问题,用到了函数最值法、分离参数法.考查逻辑思维、计算、分析、转化能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•武汉模拟)函数t=f(x+2)的图象过点P(-1,3),则函数y=f(x)的图象关于原点O对称的图象一定过点
(-1,-3)
(-1,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武汉模拟)已知数列{an}满足an+1=
1+an
3-an
(n∈N*),且a1=0

(1)求a2,a3
(2)若存在一个常数λ,使得数列{
1
an
}
为等差数列,求λ值;
(3)求数列{an}通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武汉模拟)若cosα=
3
5
,-
π
2
<α<0,则tanα
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武汉模拟)“数列{an}为等比数列”是“数列{an+an+1}为等比数列”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武汉模拟)两直线2x+y+2=0与ax+4y-2=0垂直,则其交点坐标为
(-1,0)
(-1,0)

查看答案和解析>>

同步练习册答案