【题目】某高级中学共有学生2000名,各年级男、女生人数如表:
![]()
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.
(1)求
的值;
(2)现用分层抽样的方法在全校抽取48名学生,问应该在高三年级抽取多少名?
(3)已知
,求高三年级中女生比男生多的概率.
【答案】(1)
;(2)
;(3)
.
【解析】试题分析:(1)用频率估计概率,可将概率是0.19看作是频率,求出高二女生的人数,可求出x值,
(2)再用全校的人数减去高一和高二的人数,得到高三的人数,全校要抽取48人,做出每个个体被抽到的概率,做出高三被抽到的人数.
(3)设出高三年级女生比男生多的事件为A,高三年级女生,男生数记为(y,z),因为y+z=500,且y,z∈N,列举出基本事件空间包含的基本事件有共11个,事件A包含的基本事件数,得到结果.
试题解析:
(1)∵
,∴
.
(2) 高三年级人数为:
,
现用分层抽样的方法在全校抽取48名学生,应在高三年级抽取的人数为:
人.
(3)设高三年级女生比男生多的事件为
,高三年级女生男生数记为
,
由(2)
且
,基本事件空间包含的基本事件有:
共11个,
事件
包含的基本事件有:
,共5个,
∴
.
科目:高中数学 来源: 题型:
【题目】如图所示的几何体中,四边形
为等腰梯形,
∥
,
,
,四边形
为正方形,平面
平面
.
(Ⅰ)若点
是棱
的中点,求证:
∥平面
;
(Ⅱ)求直线
与平面
所成角的正弦值;
(Ⅲ)在线段
上是否存在点
,使平面
平面
?若存在,求
的值;若不存在,说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设偶函数f(x)满足f(x)=x3﹣8(x≥0),则{x|f(x﹣2)>0}=( )
A.{x|x<﹣2或x>4}
B.{x|x<0或x>4}
C.{x|x<0或x>6}
D.{x|x<﹣2或x>2}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知坐标平面上点
与两个定点
,
的距离之比等于5.
(1)求点
的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为
,过点
的直线
被
所截得的线段的长为 8,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=x2﹣ax+3,且对任意的实数x都有f(4﹣x)=f(x)成立.
(1)求实数a的值;
(2)求函数f(x)在区间[0,3]上的值域;
(3)要得到函数y=x2的图象只需要将二次函数y=f(x)的图象做怎样的变换得到.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|
>0},集合B={x|y=lg(﹣x2+3x+28)},集合C={x|m+1≤x≤2m﹣1}.
(1)求(RA)∩B;
(2)若B∪C=B,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com