精英家教网 > 高中数学 > 题目详情

【题目】某高级中学共有学生2000名,各年级男、女生人数如表:

已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.

(1)求的值;

(2)现用分层抽样的方法在全校抽取48名学生,问应该在高三年级抽取多少名?

(3)已知,求高三年级中女生比男生多的概率.

【答案】(1);(2);(3).

【解析】试题分析:(1)用频率估计概率,可将概率是0.19看作是频率,求出高二女生的人数,可求出x值,
(2)再用全校的人数减去高一和高二的人数,得到高三的人数,全校要抽取48人,做出每个个体被抽到的概率,做出高三被抽到的人数.
(3)设出高三年级女生比男生多的事件为A,高三年级女生,男生数记为(y,z),因为y+z=500,且y,zN,列举出基本事件空间包含的基本事件有共11个,事件A包含的基本事件数,得到结果.

试题解析:

(1)∵,∴.

(2) 高三年级人数为:

现用分层抽样的方法在全校抽取48名学生,应在高三年级抽取的人数为: 人.

(3)设高三年级女生比男生多的事件为,高三年级女生男生数记为

由(2),基本事件空间包含的基本事件有: 共11个,

事件包含的基本事件有: ,共5个,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,四边形为等腰梯形, ,四边形为正方形,平面平面.

(Ⅰ)若点是棱的中点,求证: ∥平面

(Ⅱ)求直线与平面所成角的正弦值;

(Ⅲ)在线段上是否存在点,使平面平面?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线的焦点为,直线且依次交抛物线及圆于点四点,则的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设偶函数f(x)满足f(x)=x3﹣8(x≥0),则{x|f(x﹣2)>0}=(
A.{x|x<﹣2或x>4}
B.{x|x<0或x>4}
C.{x|x<0或x>6}
D.{x|x<﹣2或x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知坐标平面上点与两个定点 的距离之比等于5.

(1)求点的轨迹方程,并说明轨迹是什么图形;

2)记(1)中的轨迹为,过点的直线所截得的线段的长为 8,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,斜三棱柱中,侧面为菱形,底面是等腰直角三角形, .

(1)求证:直线直线

(2)若直线与底面成的角为60°,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程表示焦点在x轴上的椭圆;命题q:双曲线的离心率e.若命题“pq”为真命题,“pq”为假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=x2﹣ax+3,且对任意的实数x都有f(4﹣x)=f(x)成立.
(1)求实数a的值;
(2)求函数f(x)在区间[0,3]上的值域;
(3)要得到函数y=x2的图象只需要将二次函数y=f(x)的图象做怎样的变换得到.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x| >0},集合B={x|y=lg(﹣x2+3x+28)},集合C={x|m+1≤x≤2m﹣1}.
(1)求(RA)∩B;
(2)若B∪C=B,求实数m的取值范围.

查看答案和解析>>

同步练习册答案