分析 (Ⅰ)由已知得到h(x),求其导函数,解得导函数的零点,由导函数的零点对定义域分段,求得函数的单调区间,进一步求得极值;
(Ⅱ)由函数g(x)=f(x)-ax在定义域内为增函数,可得g′(x)≥0(x>0)恒成立,分离参数a,利用基本不等式求得最值得答案.
解答 解:(Ⅰ) 由已知,得h(x)=f(x)-3x=lnx+x2-3x,$h'(x)=\frac{{2{x^2}-3x+1}}{x}$(x>0),
令$h'(x)=\frac{{2{x^2}-3x+1}}{x}$=0,得x=$\frac{1}{2}$或x=1,
∴当x∈(0,$\frac{1}{2}$)∪(1,+∞)时,h′(x)>0,当x∈($\frac{1}{2},1$)时,h′(x)<0,
∴h(x)在(0,$\frac{1}{2}$),(1,+∞)上为增函数,在($\frac{1}{2},1$)上为减函数.
∴h(x)极小值=h(1)=-2,$h{(x)_{极大值}}=h(\frac{1}{2})=-\frac{5}{4}-ln2$;
(Ⅱ)g(x)=f(x)-ax=lnx+x2-ax,g′(x)=$\frac{1}{x}+2x-a$,
由题意,知g′(x)≥0(x>0)恒成立,
即a≤$(2x+\frac{1}{x})_{min}$.
∵x>0时,2x+$\frac{1}{x}$$≥2\sqrt{2}$,当且仅当x=$\frac{\sqrt{2}}{2}$时等号成立.
故$(2x+\frac{1}{x})_{min}=2\sqrt{2}$,
∴a$≤2\sqrt{2}$.
点评 本题考查利用导数研究函数的单调性,训练了分离参数法及构造函数求最值,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 天气 | 晴 | 霾 | 霾 | 阴 | 霾 | 霾 | 阴 | 霾 | 霾 | 霾 | 阴 | 晴 | 霾 | 霾 | 霾 |
| 日期 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 天气 | 霾 | 霾 | 霾 | 阴 | 晴 | 霾 | 霾 | 晴 | 霾 | 晴 | 霾 | 霾 | 霾 | 晴 | 霾 |
| 不限行 | 限行 | 总计 | |
| 没有雾霾 | a | ||
| 有雾霾 | b | ||
| 总计 | 30 | 30 | 60 |
| P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 14π | B. | 7π | C. | 21π | D. | 28π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | S2016=2016,a1008>a1009 | B. | S2016=-2016,a1008>a1009 | ||
| C. | S2016=2016,a1008<a1009 | D. | S2016=-2016,a1008<a1009 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com