精英家教网 > 高中数学 > 题目详情
已知函数有如下性质:如果常数a>0,那么该函数在上是减函数,在上是增函数.
(1)如果函数的值域是[6,+∞),求实数m的值;
(2)求函数(a>0)在x∈[1,2]上的最小值g(a)的表达式.
【答案】分析:(1)函数上是减函数,在上是增函数,根据函数的值域是[6,+∞),即可求实数m的值;
(2)令x2=t,从而问题可转化为f(t)在[1,4]上的最小值,分类讨论:1°当,即a>16时,f(t)在[1,4]上是减函数;2°当,即1≤a≤16时,;3°当,即0<a<1时,f(t)在[1,4]上是增函数,故可求最小值g(a)的表达式.
解答:解:(1)由已知,函数上是减函数,在上是增函数,
,…(4分)
,∴3m=9,
∴m=2.…(6分)
(2)令x2=t,∵x∈[1,2],

原题即求f(t)在[1,4]上的最小值.…(7分)
1°当,即a>16时,f(t)在[1,4]上是减函数,此时,…(9分)
2°当,即1≤a≤16时,
3°当,即0<a<1时,f(t)在[1,4]上是增函数,此时g(a)=f(1)=1+a.…(13分)
∴g(a)=
点评:本题考查函数的最值,考查函数的单调性,解题的关键是利用函数的单调性,解决函数的最值问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题16分)已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数。

(1)如果函数上是减函数,在上是增函数,求的值。

(2)设常数,求函数的最大值和最小值;

(3)当是正整数时,研究函数的单调性,并说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题16分)已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数。

(1)如果函数上是减函数,在上是增函数,求的值。

(2)设常数,求函数的最大值和最小值;

(3)当是正整数时,研究函数的单调性,并说明理由  

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数有如下性质:如果常数,那么该函数在(0,)上减函数,在是增函数。

(1)如果函数的值域为,求的值;

(2)研究函数(常数)在定义域的单调性,并说明理由;

(3)对函数(常数)作出推广,使它们都是你所推广的函数的特例。研究推广后的函数的单调性(只须写出结论,不必证明),并求函数

(n是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论)。

查看答案和解析>>

科目:高中数学 来源:庆安三中2010——2011学年度高二下学期期末考试数学(文) 题型:解答题

(12分)已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数。
(1)如果函数上是减函数,在上是增函数,求的值。
(2)设常数,求函数的最大值和最小值;

查看答案和解析>>

科目:高中数学 来源:2010年浙江省高一上学期期中考试数学试卷 题型:解答题

(本题12分)已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数;

(1)如果函数上是减函数,在上是增函数,求的值;

(2)当时,试用函数单调性的定义证明函数f(x)在上是减函数。

(3)设常数,求函数的最大值和最小值;

 

查看答案和解析>>

同步练习册答案