精英家教网 > 高中数学 > 题目详情
已知a,b,c均为实数,在命题“若a>b,则ac2>bc2”的原命题,逆命题,否命题和逆否命题这四个命题中,真命题的个数为(  )
分析:根据命题的等价关系,可先判断原命题与逆命题的真假.
解答:解:若a>b,c2=0,则ac2=bc2.∴原命题若a>b,则ac2>bc2为假;
∵逆否命题与原命题等价,
∴逆否命题也为假.
 原命题的逆命题是:若ac2>bc2,则c2≠0且c2>0,则a>b.∴逆命题为真;
 又∵逆命题与否命题等价,
∴否命题也为真;
综上,四个命题中,真命题的个数为2.
故选:C.
点评:本题考查命题的真假判断,根据命题的等价关系,四个命题中,真(假)命题的个数必为偶数个.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a,b,c均为实常数,且a≠0),满足条件f(0)=f(2)=0,且方程f(x)=2x有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)试确定一个区间P,使得f(x)在P内单调递减且不等式f(x)≥0在P内恒成立;
(3)是否存在这样的实数m、n,满足m<n,使得f(x)在区间[m,n]内的取值范围恰好是[4m,4n]?如果存在,试求出m、n的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)=ax2+bx+c(a,b,c均为实常数,且a≠0),满足条件f(0)=f(2)=0,且方程f(x)=2x有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)试确定一个区间P,使得f(x)在P内单调递减且不等式f(x)≥0在P内恒成立;
(3)是否存在这样的实数m、n,满足m<n,使得f(x)在区间[m,n]内的取值范围恰好是[4m,4n]?如果存在,试求出m、n的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数f(x)=ax2+bx+c(a,b,c均为实常数,且a≠0),满足条件f(0)=f(2)=0,且方程f(x)=2x有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)试确定一个区间P,使得f(x)在P内单调递减且不等式f(x)≥0在P内恒成立;
(3)是否存在这样的实数m、n,满足m<n,使得f(x)在区间[m,n]内的取值范围恰好是[4m,4n]?如果存在,试求出m、n的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕头市潮阳一中高一(上)期中数学试卷(解析版) 题型:解答题

已知二次函数f(x)=ax2+bx+c(a,b,c均为实常数,且a≠0),满足条件f(0)=f(2)=0,且方程f(x)=2x有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)试确定一个区间P,使得f(x)在P内单调递减且不等式f(x)≥0在P内恒成立;
(3)是否存在这样的实数m、n,满足m<n,使得f(x)在区间[m,n]内的取值范围恰好是[4m,4n]?如果存在,试求出m、n的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年湖北百所重点联考文)已知方程的两个不等实根均大于2,则实数a的取值范围为    (    )

    A. B. C.(4,9)  D.(8,9)

查看答案和解析>>

同步练习册答案