精英家教网 > 高中数学 > 题目详情
设F1、F2分别是椭圆C:+=1(a>b>0)的左、右焦点,l为左准线,A1、A2分别为其长轴的左、右端点.

(1)若椭圆上的点M(1,)到F1、F2的距离之和为4,求椭圆方程;

(2)有一个猜想:“设P(x1,y1)、Q(x2,y2)(y1y2≠0)是椭圆C上的任意两点,若P、F1、Q三点共线,则直线PA1、QA2、l共点.”你认为这个猜想能成立吗?请说明理由.

解:(1)由已知得,

2a=|MF1|+|MF2|=4,

∴a=2.又M在椭圆上,

+=1.

∴b=.

∴椭圆方程为+=1.

(2)由已知,A1(-a,0)、A2(a,0)、F1(-c,0),直线PA1的方程为y=(x+a),

    直线QA2的方程为y=(x-a).

    设直线PA1与l交于点P′(-,yP′);直线QA2与直线l交于Q′(-,yQ′).

yP′=(-+a),

yQ′=(--a).

    要证PA1、QA2、l共点,只需证yP′=yQ′.

∵P、F1、Q三点共线,

=.

∴c=.                                                                   ①

    由yP′=yQ(-+a)=(--a)=,

    将①代入得yP′=yQ.                                ②

    又∵点P、Q在椭圆C上,

    两式相比得,

∴②恒成立.

∴恒有yP′=yQ′.

∴直线PA1、QA2、l恒共点.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网设F1,F2分别是椭圆C:
x2
6m2
+
y2
2m2
=1
(m>0)的左,右焦点.
(1)当P∈C,且
PF1
PF
2
=0
,|PF1|•|PF2|=8时,求椭圆C的左,右焦点F1、F2
(2)F1、F2是(1)中的椭圆的左,右焦点,已知⊙F2的半径是1,过动点Q的作⊙F2切线QM,使得|QF1|=
2
|QM|
(M是切点),如图.求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,且椭圆上一点P(1,
3
2
)
到F1,F2两点距离之和等于4.
(Ⅰ)求此椭圆方程;
(Ⅱ)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N,且线段MN的垂直平分线过定点G(
1
8
,0)
,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设F1、F2分别是椭圆C:
x2
6m2
+
y2
2m2
=1
(m>0)的左、右焦点.
(I)当p∈C,且
pF1
pF
2
=0
|
pF1
|•|
pF
2
|=4
时,求椭圆C的左、右焦点F1、F2的坐标.
(II)F1、F2是(I)中的椭圆的左、右焦点,已知F2的半径是1,过动点Q作的切线QM(M为切点),使得|QF1|=
2
|QM|
,求动点Q的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2分别是椭圆C:
x2
a2
+
x2
b2
=1(a>b>0)的焦点,若椭圆C上存在点P,使线段PF1的垂直平分线过点F2,则椭圆离心率的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆二模)设F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点.
(1)设椭圆C上的点(
2
2
3
2
)
到F1,F2两点距离之和等于2
2
,写出椭圆C的方程;
(2)设过(1)中所得椭圆上的焦点F2且斜率为1的直线与其相交于A,B,求△ABF1的面积;
(3)设点P是椭圆C 上的任意一点,过原点的直线l与椭圆相交于M,N两点,当直线PM,PN的斜率都存在,并记为kPN,kPN试探究kPN•kPN的值是否与点P及直线l有关,并证明你的结论.

查看答案和解析>>

同步练习册答案