精英家教网 > 高中数学 > 题目详情
(1)若关于x的不等式tx2-6x+t2<0的解集(-∞,a)∪(1,+∞),求a的值.
(2)如果不等式(m+1)x2+2mx+m+1>0对任意实数x都成立,求实数m的取值范围.
分析:(1)利用不等式的解集与方程根之间的关系,确定a,1是方程tx2-6x+t2=0的两根,且a<1,再利用根与系数的关系,即可求得a的值;
(2)当m+1=0时,经检验不满足条件.当m≠0时,由题意可得-2x>0不成立,从而得出结论.
解答:解:(1)∵tx2-6x+t2<0的解集是(-∞,a)∪(1,+∞)
∴t<0
x=1代入得t-6+t2=0
解得:t=-3或t=2(舍去)
∵a•1=t=-3
a=-3
(2)∵不等式(m+1)x2+2mx+m+1>0对任意实数都成立
∴当m+1≠0时,△=4m2-4(m+1)2<0
∴m>-
1
2
当m+1=0时,-2x>0不成立
故m>-
1
2
点评:本题考查不等式的解集和函数的恒成立问题,考查根与系数关系的运用,利用不等式的解集与方程根之间的关系是解题的关键,体现了分类讨论的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x)=-
1
4
x4+
2
3
x3+ax2-2x-2
,其中a为实常数,已知函数y=f(x)的图象在点(-1,f(-1))处的切线与y轴垂直.
(1)求实数a的值;
(2)若关于x的方程f(3x)=m有三个不等实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
log5|x-5|,(x≠5)
3 ,(x=5)
,若关于x的方程f2(x)+bf(x)+c=0有五个不等实根x1,x2,…,x5,则f(x1+x2+…+x5)=
1+2lo
g
2
5
1+2lo
g
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2
x-1x+1
,g(x)=2ax+1-a,又h(x)=f(x)+g(x)
(1)求函数f(x)的定义域;(2)试讨论h(x)的奇偶性;
(3)若关于x的方程f(x)=log2g(x)有两个不等实数根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=(m-1)x2+(m-2)x-1(m∈R).
(1)当m为何值时,抛物线与x轴有两个交点?
(2)若关于x的方程(m-1)x2+(m-2)x-1=0的两个不等实根的倒数平方和不大于2,求m的取值范围;
(3)如果抛物线与x轴相交于A,B两点,与y轴交于C点,且三角形ABC的面积等于2,试求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)=
1
|x-1|
,x≠1
1,x=1
,若关于x的方程f2(x)+bf(x)+c=0,有3个不等的实数根x1,x2,x3,则x1+x2+x3=(  )
A、0B、1C、3D、2

查看答案和解析>>

同步练习册答案