精英家教网 > 高中数学 > 题目详情
(2013•日照二模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点D(1,
2
2
),焦点为F1,F2,满足
DF1
.
DF2
=
1
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点(2,0)的直线与椭圆C相交于两点A、B,P为椭圆上一点,且满足
OA
+
OB
=t
OP
(其中O为坐标原点),求整数t的最大值.
分析:(Ⅰ)把点的坐标代入椭圆方程得到一个关于a,b的方程,由
DF1
.
DF2
=
1
2
代入坐标后求出c的值,结合a2-b2=c2得到关于a,b的另一方程联立后可求解a,b的值,则椭圆方程可求;
(Ⅱ)设出直线方程,和椭圆联立后化为关于x的一元二次方程,由判别式大于0求出k的范围,利用根与系数关系得到A,B两点的横坐标的和与积,代入
OA
+
OB
=t
OP
后得到P点的坐标,把P点坐标代入椭圆方程后得到t与k的关系,由k的范围确定t的范围.
解答:解:(Ⅰ)由已知过点D(1,
2
2
)
,得
1
a2
+
1
2b2
=1
,①
记c=
a2-b2
,不妨设F1(-c,0),F2(c,0),则
DF
1
=(-c-1,-
2
2
),
DF2
=(c-1,-
2
2
),
DF
1
DF2
=
1
2
=(-c-1)(c-1)+(-
2
2
)2
,得c2=1,即a2-b2=1.②
由①、②,得a2=2,b2=1.
故椭的方程为
x2
2
+y2=1

(Ⅱ)由题意知,直线AB的斜率存在.
设AB方程为y=k(x-2),A(x1,y1),B(x2,y2),P(x,y).
y=k(x-2)
x2
2
+y2=1
,得(1+2k2)x2-8k2x+8k2-2=0.
△=64k2-4(2k2+1)(8k2-2)>0,k2
1
2

x1+x2=
8k2
1+2k2
x1x2=
8k2-2
1+2k2

OA
+
OB
=t
OP
,∴(x1+x2,y1+y2)=t(x,y).
x=
x1+x2
t
=
8k2
t(1+2k2)
y=
y1+y2
t
=
1
t
[k(x1+x2)-4k]=
-4k
t(1+2k2)

∵点P在椭圆上,∴
(8k2)2
t2(1+2k2)2
+2
(-4k)2
t2(1+2k2)2
=2

∴16k2=t2(1+2k2),t2=
16k2
1+2k2
=
16
1
k2
+2
16
2+2
=4

∴-2<t<2.
∴t的最大整数值为1.
点评:本题考查了椭圆的简单几何性质,考查了直线与圆锥曲线的关系,考查了平面向量的坐标运算,训练了利用代入法求解变量的取值范围.属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•日照二模)已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<ex的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照二模)如图:(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y与乘客量x之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图(2)(3)所示.
给出下说法:
①图(2)的建议是:提高成本,并提高票价;   ②图(2)的建议是:降低成本,并保持票价不变;
③图(3)的建议是:提高票价,并保持成本不变;④图(3)的建议是:提高票价,并降低成本.
其中所有说法正确的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照二模)设全集U={-2,-1,0,1,2},集合A={-1,1,2},B={-1,1},则A∩(?B)为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照二模)“x2-2x<0”是“0<x<4”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•日照二模)执行如图所示的程序,若输出的结果是4,则判断框内实数m的值可以是(  )

查看答案和解析>>

同步练习册答案