精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线l的参数方程为 (其中t为参数).现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=6cosθ.
(Ⅰ) 写出直线l普通方程和曲线C的直角坐标方程;
(Ⅱ) 过点M(﹣1,0)且与直线l平行的直线l1交C于A,B两点,求|AB|.

【答案】解:(Ⅰ) 由 消去参数t,得直线l的普通方程为x﹣y﹣6=0.

又由ρ=6cosθ得ρ2=6ρcosθ,

得曲线C的直角坐标方程为x2+y2﹣6x=0.

(Ⅱ) 过点M(﹣1,0)且与直线l平行的直线l1的参数方程为

将其代入x2+y2﹣6x=0得

,知t1>0,t2>0,

所以


【解析】(Ⅰ)根据极坐标方程和一般方程的转化关系可得出直线和曲线的直角坐标方程;(Ⅱ)由直线的参数方程联立曲线C的方程,再利用韦达定理以及两点间的距离公式求出 | A B |。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】漳州水仙鳞茎硕大,箭多花繁,色美香郁,素雅娟丽,有“天下水仙数漳州”之美誉.现某水仙花雕刻师受雇每天雕刻250粒水仙花,雕刻师每雕刻一粒可赚1.2元,如果雕刻师当天超额完成任务,则超出的部分每粒赚1.7元;如果当天未能按量完成任务,则按实际完成的雕刻量领取当天工资. (I)求雕刻师当天收入(单位:元)关于雕刻量n(单位:粒,n∈N)的函数解析式f(n);
(Ⅱ)该雕刻师记录了过去10天每天的雕刻量n(单位:粒),整理得如表:

雕刻量n

210

230

250

270

300

频数

1

2

3

3

1

以10天记录的各雕刻量的频率作为各雕刻量发生的概率.
(ⅰ)求该雕刻师这10天的平均收入;
(ⅱ)求该雕刻师当天收入不低于300元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1所示,在等腰梯形ABCD中, .把△ABE沿BE折起,使得 ,得到四棱锥A﹣BCDE.如图2所示.
(1)求证:面ACE⊥面ABD;
(2)求平面ABE与平面ACD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2xcos . (Ⅰ)求函数f(x)的最小正周期和对称轴的方程;
(Ⅱ)求函数f(x)在区间 上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的各项均为正数,且
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+…+log3an , 求数列 的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某经销商计划经营一种商品,经市场调查发现,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克,1<x≤12)满足:当1<x≤4时,y=a(x﹣3)2+ ,(a,b为常数);当4<x≤12时,y= ﹣100.已知当销售价格为2元/千克时,每日可售出该特产800千克;当销售价格为3元/千克时,每日可售出150千克.
(1)求a,b的值,并确定y关于x的函数解析式;
(2)若该商品的销售成本为1元/千克,试确定销售价格x的值,使店铺每日销售该特产所获利润f(x)最大.( ≈2.65)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2,O为AD的中点,射线OP从OA出发,绕着点O顺时针方向旋转至OD,在旋转的过程中,记∠AOP为x(x∈[0,π]),OP所经过的在正方形ABCD内的区域(阴影部分)的面积S=f(x),那么对于函数f(x)有以下三个结论,其中不正确的是( )
①f( )=
②函数f(x)在( ,π)上为减函数
③任意x∈[0, ],都有f(x)+f(π﹣x)=4.

A.①
B.③
C.②
D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =( sinωx,1), =(cosωx,cos2ωx+1),设函数f(x)=
(1)若函数f(x)的图象关于直线x= 对称,且ω∈[0,3]时,求函数f(x)的单调增区间;
(2)在(1)的条件下,当 时,函数f(x)有且只有一个零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,侧面ADD1A1⊥底面ABCD,D1A=D1D= ,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.

(Ⅰ)求证:A1O∥平面AB1C;
(Ⅱ)求锐二面角A﹣C1D1﹣C的余弦值.

查看答案和解析>>

同步练习册答案