【题目】设椭圆
(
)的左、右焦点分别为
,过
的直线交椭圆于
,
两点,若椭圆
的离心率为
,
的周长为
.
(1)求椭圆
的方程;
(2)设不经过椭圆的中心而平行于弦
的直线交椭圆
于点
,
,设弦
,
的中点分别为
,证明:
三点共线.
科目:高中数学 来源: 题型:
【题目】“吸烟有害健康,吸烟会对身体造成伤害”,哈尔滨市于2012年5月31日规定室内场所禁止吸烟.美国癌症协会研究表明,开始吸烟年龄X分别为16岁、18岁、20岁和22岁者,其得肺癌的相对危险度Y依次为15.10,12.81,9.72,3.21;每天吸烟支数U分别为10,20,30者,其得肺癌的相对危险度V分别为7.5,9.5和16.6,用
表示变量X与Y之间的线性相关系数,用r2表示变量U与V之间的线性相关系数,则下列说法正确的是( )
A.r1=r2B.r1>r2>0
C.0<r1<r2D.r1<0<r2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xln x-aex(e为自然对数的底数)有两个极值点,则实数a的取值范围是( )
A.
B.(0,e)
C.
D.(-∞,e)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:千元)对年销售量
(单位:
)和年利润
(单位:千元)的影响.对近
年的年宣传费
和年销售量数据
作了初步处理,得到下面的散点图及一些统计量的值.
![]()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
表中
,
.附:对于一组数据
,
,
,
,其回归直线
的斜率和截距的最小二乘法估计分别为
,
.
(1)根据散点图判断,
与
在哪一个适宜作为年销售量
关于年宣传费
的回归方程类型?(给出判断即可,不必说明理由)
(2)根据1小问的判断结果及表中数据,建立
关于
的回归方程;
(3)已知这种产品的年利润
与
的关系为
.根据2小问的结果回答下列问题:
①2年宣传费
时,年销售量及年利润的预报值是多少?
②3年宣传费
为何值时,年利润的预报值最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
某学校用简单随机抽样方法抽取了100名同学,对其日均课外阅读时间(单位:分钟)进行调查,结果如下:
t |
|
|
|
|
|
|
男同学人数 | 7 | 11 | 15 | 12 | 2 | 1 |
女同学人数 | 8 | 9 | 17 | 13 | 3 | 2 |
若将日均课外阅读时间不低于60分钟的学生称为“读书迷”.
(1)将频率视为概率,估计该校4000名学生中“读书迷”有多少人?
(2)从已抽取的8名“读书迷”中随机抽取4位同学参加读书日宣传活动.
(i)求抽取的4位同学中既有男同学又有女同学的概率;
(ii)记抽取的“读书迷”中男生人数为
,求
的分布列和数学期望
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三家企业产品的成本分别为10000,12000,15000,其成本构成如下图所示,则关于这三家企业下列说法错误的是( )
![]()
A.成本最大的企业是丙企业B.费用支出最高的企业是丙企业
C.支付工资最少的企业是乙企业D.材料成本最高的企业是丙企业
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等边
的边长为3,点
分别为
上的点,且满足
(如图1),将
沿
折起到
的位置,使二面角
成直二面角,连接
,
(如图2)
![]()
![]()
(1)求证:
平面
;
(2)在线段
上是否存在点
,使直线
与平面
所成的角为
?若存在,求出
的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,曲线
的普通方程为
,曲线
的参数方程为
(
为参数),以坐标原点为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求曲线
的极坐标方程和曲线
的普通方程;
(2)直线
与曲线
在第一象限内的交点为
,过点
的直线
交曲线
于
两点,且
的中点为
,求直线
的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com