精英家教网 > 高中数学 > 题目详情
已知fx)是定义[11]上的函数.当ab∈[11],且ab≠0时,有

)判断函数fx)的单调性,并给以证明;

)若f1)=1fx2bm1对所有x∈[11]b∈[11]恒成立,求实数m的取值范围.

 

答案:
解析:

解:  ,得f(x)的定义域为  x<-3x3g(x)的定义域是x1

   D{x|x3}

  又  ,则tD上是增函数.

    0a1时,f(x)D上是减函数,g(x)D上也是减函数. 

  [mn]D

    f(x)g(x)[mn]上都是减函数.    3mn

  且有    mn是方程f(x)g(x)的两个相异实根

  即mn是方程的两个大于3的相异实根

  令  它表示开口向上的抛物线,有

   

 

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
f(a)+f(b)
a+b
>0

(1)证明函数a=1在f(x)=-x2+x+lnx上是增函数;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
对所有f'(x)=0,任意x=-
1
2
恒成立,求实数x=1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2009)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0)上是增函数,设a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),则a,b,c的大小关系
a>b>c
a>b>c

查看答案和解析>>

同步练习册答案