设函数
在
及
时取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)若对于任意的
,都有
成立,求c的取值范围.
解:(Ⅰ)
,
.
(Ⅱ)
的取值范围为
.
【解析】本题考查了导数的应用:函数在某点存在极值的性质,函数恒成立问题题,而函数①f(x)<c2在区间[a,b]上恒成立与②存在x∈[a,b],使得f(x)<c2是不同的问题.①⇔f(x)max<c2,②⇔f(x)min<c2,在解题时要准确判断是“恒成立”问题还是“存在”问题.在解题时还要体会“转化思想”及“方程与函数不等式”的思想的应用。
(1)依题意有,f'(1)=0,f'(2)=0.求解即可.
(2)若对任意的x∈[0,3],都有f(x)<c2成立⇔f(x)max<c2在区间[0,3]上成立,根据导数求出函数在[0,3]上的最大值,进一步求c的取值范围.
科目:高中数学 来源:2013-2014学年浙江省建人高复高三上学期第二次月考文科数学试卷(解析版) 题型:解答题
设函数
在
及
时取得极值.
(1)求a、b的值;
(2)若对于任意的
,都有
成立,求c的取值范围.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年山东省德州市高三上学期1月月考考试文科数学试卷(解析版) 题型:解答题
设函数
在
及
时取得极值.
(1)求a、b的值;(2)若对于任意的
,都有
成立,求c的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届山东省济宁市高二3月质量检测文科数学试卷(解析版) 题型:解答题
设函数
在
及
时取得极值.
(1)求
、b的值;
(2)若对于任意的
,都有
成立,求c的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010年河北省高二第二学期期末考试数学(文)试卷 题型:解答题
(本小题满分12分)
设函数
在
及
时取得极值;
(Ⅰ)求
与b的值;
(Ⅱ)若对于任意的
,都有
成立,求c的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com