已知过抛物线
的焦点
的直线交抛物线于
,
两点.求证:
(1)
为定值;
(2)
为定值.
科目:高中数学 来源: 题型:解答题
设
分别是椭圆
的左,右焦点.
(1)若
是椭圆在第一象限上一点,且
,求
点坐标;
(2)设过定点
的直线
与椭圆交于不同两点
,且
为锐角(其中
为原点),求直线
的斜率
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆
的焦点在
轴上,
分别是椭圆的左、右焦点,点
是椭圆在第一象限内的点,直线
交
轴于点
,
(1)当
时,
(1)若椭圆
的离心率为
,求椭圆
的方程;
(2)当点P在直线
上时,求直线
与
的夹角;
(2) 当
时,若总有
,猜想:当
变化时,点
是否在某定直线上,若是写出该直线方程(不必求解过程).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设圆C与两圆(x+
)2+y2=4,(x-
)2+y2=4中的一个内切,另一个外切.
(1)求C的圆心轨迹L的方程;
(2)已知点M(
,
),F(
,0),且P为L上动点,求||MP|-|FP||的最大值及此时点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆
,称圆心在坐标原点O,半径为
的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是
.
(1)若椭圆C上一动点
满足
,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点
作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为
,求P点的坐标;
(3)已知
,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点
的直线的最短距离
.若存在,求出a,b的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知点A
,椭圆E:
的离心率为
;F是椭圆E的右焦点,直线AF的斜率为
,O为坐标原点
(I)求E的方程;
(II)设过点A的动直线
与E 相交于P,Q两点。当
的面积最大时,求
的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,设椭圆
动直线
与椭圆
只有一个公共点
,且点
在第一象限.
(1)已知直线
的斜率为
,用
表示点
的坐标;
(2)若过原点
的直线
与
垂直,证明:点
到直线
的距离的最大值为
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(13分)(2011•天津)设椭圆
+
=1(a>b>0)的左、右焦点分别为F1,F2.点P(a,b)满足|PF2|=|F1F2|.
(Ⅰ)求椭圆的离心率e;
(Ⅱ)设直线PF2与椭圆相交于A,B两点,若直线PF2与圆(x+1)2+
=16相交于M,N两点,且|MN|=
|AB|,求椭圆的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com