【题目】如图所示,已知多面体
中,四边形
为菱形,
为正四面体,且
.
![]()
(1)求证:
平面
;
(2)求二面角
的余弦值.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的方程为
,斜率为
的直线
与椭圆
交于
,
两点,点
在直线
的左上方.
(1)若以
为直径的圆恰好经过椭圆右焦点
,求此时直线
的方程;
(2)求证:
的内切圆的圆心在定直线
上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有甲、乙、丙、丁、戊5种在线教学软件,若某学校要从中随机选取3种作为教师“停课不停学”的教学工具,则其中甲、乙、丙至多有2种被选取的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知f(x)=x3+3ax2+bx+a2在x=-1时有极值0,求常数a,b的值;
(2)设函数g(x)=x3-6x+5,x∈R. 若关于x的方程g(x)=m有三个不同的实根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着运动app和手环的普及和应用,在朋友圈、运动圈中出现了每天1万步的健身打卡现象,“日行一万步,健康一辈子”的观念广泛流传.“健步达人”小王某天统计了他朋友圈中所有好友(共500人)的走路步数,并整理成下表:
分组(单位:千步) |
|
|
|
|
|
|
|
|
频数 | 60 | 240 | 100 | 60 | 20 | 18 | 0 | 2 |
(1)请估算这一天小王朋友圈中好友走路步数的平均数(同一组中数据以这组数据所在区间中点值作代表);
(2)若用
表示事件“走路步数低于平均步数”,试估计事件
发生的概率;
(3)若称每天走路不少于8千步的人为“健步达人”,小王朋友圈中岁数在40岁以上的中老年人共有300人,其中健步达人恰有150人,请填写下面
列联表.根据列联表判断,有多大把握认为,健步达人与年龄有关?
健步达人 | 非健步达人 | 合计 | |
40岁以上 | |||
不超过40岁 | |||
合计 |
附:
.
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,边长为a的空间四边形ABCD中,∠BCD=90°,平面ABD⊥平面BCD,则异面直线AD与BC所成角的大小为( )
![]()
A. 30°B. 45°C. 60°D. 90°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,
为抛物线
上不同的两点,且
,点![]()
且
于点
.
(1)求
的值;
(2)过
轴上一点
的直线
交
于
,
两点,
在
的准线上的射影分别为
,
为
的焦点,若
,求
中点
的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,an=
(n∈N*,n≥2),数列{bn}满足关系式bn=
(n∈N*).
(1)求证:数列{bn}为等差数列;
(2)求数列{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,以原点
为极点,
轴正半轴为极轴建立极坐标系.已知直线
的极坐标方程为
,曲线
的极坐标方程为
.
(1)写出直线
和曲线
的直角坐标方程;
(2)过动点
且平行于
的直线交曲线
于
两点,若
,求动点
到直线
的最近距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com