精英家教网 > 高中数学 > 题目详情

 设函数,则的值为                            【    】

A.0              B.1          C.10           D.不存在

 

【答案】

 B;   

 

练习册系列答案
相关习题

科目:高中数学 来源:2012学年浙江省杭州七校高一第二学期期中联考数学试卷(解析版) 题型:解答题

中,满足,边上的一点.

(Ⅰ)若,求向量与向量夹角的正弦值;

(Ⅱ)若=m  (m为正常数) 且边上的三等分点.,求值;

(Ⅲ)若的最小值。

【解析】第一问中,利用向量的数量积设向量与向量的夹角为,则

=,得,又,则为所求

第二问因为=m所以

(1)当时,则= 

(2)当时,则=

第三问中,解:设,因为

所以于是

从而

运用三角函数求解。

(Ⅰ)解:设向量与向量的夹角为,则

=,得,又,则为所求……………2

(Ⅱ)解:因为=m所以

(1)当时,则=-2分

(2)当时,则=--2分

(Ⅲ)解:设,因为

所以于是

从而---2

==

=…………………………………2

,则函数,在递减,在上递增,所以从而当时,

 

查看答案和解析>>

科目:高中数学 来源:2013届山西省晋商四校高二下学期文科数学试卷(解析版) 题型:解答题

已知,函数

(1)当时,求函数在点(1,)的切线方程;

(2)求函数在[-1,1]的极值;

(3)若在上至少存在一个实数x0,使>g(xo)成立,求正实数的取值范围。

【解析】本试题中导数在研究函数中的运用。(1)中,那么当时,  又    所以函数在点(1,)的切线方程为;(2)中令   有 

对a分类讨论,和得到极值。(3)中,设,依题意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  当时,  又    

∴  函数在点(1,)的切线方程为 --------4分

(Ⅱ)令   有 

①         当

(-1,0)

0

(0,

,1)

+

0

0

+

极大值

极小值

的极大值是,极小值是

②         当时,在(-1,0)上递增,在(0,1)上递减,则的极大值为,无极小值。 

综上所述   时,极大值为,无极小值

时  极大值是,极小值是        ----------8分

(Ⅲ)设

求导,得

    

在区间上为增函数,则

依题意,只需,即 

解得  (舍去)

则正实数的取值范围是(

 

查看答案和解析>>

科目:高中数学 来源: 题型:

【04全国Ⅲ·理】设函数,则使得f(x)1的自变量x的取值范围为

A.          B.

C.            D.

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(课标卷解析版) 题型:填空题

设函数f(x)= 的最大值为M,最小值为m,则M+m=____

【解析】,令,则为奇函数,对于一个奇函数来说,其最大值与最小值之和为0,即,而,所以.

 

查看答案和解析>>

同步练习册答案