精英家教网 > 高中数学 > 题目详情
设x∈R,f(x)=(
12
)
|x|
,若不等式f(x)+f(2x)≤k对于任意的x∈R恒成立,则实数k的取值范围是
k≥2
k≥2
分析:根据指数函数的单调性及复合函数的单调性确定原则,我们可以分析出函数f(x)和函数f(2x)的单调性,进而分析出函数F(x)=f(x)+f(2x)的单调性,进而求出F(x)=f(x)+f(2x)的最大值后,即可得到实数k的取值范围.
解答:解:∵f(x)=(
1
2
)
|x|

∴函数f(x)在区间(-∞,0]上为增函数,在区间[0,+∞)上为减函数,
且函数f(2x)在区间(-∞,0]上为增函数,在区间[0,+∞)上为减函数,
令F(x)=f(x)+f(2x),
根据函数单调性的性质可得F(x)=f(x)+f(2x)在区间(-∞,0]上为增函数,在区间[0,+∞)上为减函数,
故当x=0时,函数F(x)取最大值2,
若不等式f(x)+f(2x)≤k对于任意的x∈R恒成立,
则实数k的取值范围是k≥2
故答案为:k≥2
点评:本题以不等式恒成立问题为载体考查了函数的单调性及函数的最值,其中构造函数F(x)=f(x)+f(2x),并根据函数的单调性及复合函数的单调性确定原则,确定函数F(x)=f(x)+f(2x)的单调性及最值是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x∈R,则f(x)=coscosx与g(x)=sinsinx的大小关系(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省台州市临海市杜桥中学高三(下)3月月考数学试卷(文科)(解析版) 题型:选择题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省重点中学协作体高三第一次联考数学试卷(理科)(解析版) 题型:选择题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中数学 来源:2011年广东省高考数学试卷(文科)(解析版) 题型:选择题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

同步练习册答案