精英家教网 > 高中数学 > 题目详情
设函数f(x)=sin2x+
3
sinxcosx
 x∈R
(1)求f(x)的最小正周期和值域;
(2)将函数y=f(x)的图象按向量
a
=(-
π
6
1
2
)
平移后得到函数y=g(x)的图象,求函数y=g(x)的单调区间.
分析:(1)化简函数f(x)=sin2x+
3
sinxcosx,为一个角的一个三角函数的形式,然后求f(x)的值域和最小正周期及值域;
(2)考查函数的表达式间的关系,由函数y=f(x)的图象经由向量
a
平移可得函数 y=g(x),直接求出单调区间.
解答:解:(1)函数化简为f(x)=sin(2x-
π
6
)+
1
2
,所以最小正周期T=π,值域为[-
1
2
3
2
]

(2)函数g(x)=sin(2x+
π
6
)+1
,所以单调增区间为[kπ-
π
3
,kπ+
π
6
],k∈Z

减区间为[kπ+
π
6
,kπ+
3
],k∈Z
点评:本题考查三角函数的最值,正弦函数的周期,函数y=Asin(ωx+φ)的图象变换,考查基本知识,对有关性质的熟练程度,决定三角函数题目解答的速度,和解题质量,平时需要牢记,记熟.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(cos2ωx-sin2ωx,sinωx)
b
=(
3
,2cosωx)
,设函数f(x)=
a
b
(x∈R)
的图象关于直线x=
π
2
对称,其中ω为常数,且ω∈(0,1).
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)若将y=f(x)图象上各点的横坐标变为原来的
1
6
,再将所得图象向右平移
π
3
个单位,纵坐标不变,得到y=h(x)的图象,若关于x的方程h(x)+k=0在区间[0,
π
2
]
上有且只有一个实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinα
-
1
2
)
b
=(1
,2cosα),
a
b
=
1
5
α∈(0,
π
2
)

(1)求sin2α及sinα的值;
(2)设函数f(x)=5sin(-2x+
π
2
+α)+2cos2x
(x∈[
π
24
π
2
])
,求x为何值时,f(x)取得最大值,最大值是多少,并求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)设函数f(x)=sinx+cosx•sinφ-2sinx•sin2
φ
2
(|φ|<
π
2
)
x=
π
3
处取得极大值.
(Ⅰ)求φ的值;
(Ⅱ)在△ABC中,a,b,c分别是A,B,C的对边且a=1,b=
3
,f(A)=
3
2
,求A.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练17练习卷(解析版) 题型:解答题

设函数f(x)=-sin2ωx-sinωxcosωx(ω>0),y=f(x)图象的一个对称中心到最近的对称轴的距离为.

(1)求ω的值;

(2)f(x)在区间[π,]上的最大值和最小值.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练17练习卷(解析版) 题型:解答题

设函数f(x)=sin2ωx+2sinωx·cosωx-cos2ωx+λ(xR)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1).

(1)求函数f(x)的最小正周期;

(2)y=f(x)的图象经过点(,0),求函数f(x)的值域.

 

查看答案和解析>>

同步练习册答案