精英家教网 > 高中数学 > 题目详情

【题目】某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组,第二组第八组,如图是按上述分组方法得到的频率分布直方图的一部分.

(1)求第七组的频率,并完成频率分布直方图;

(2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);

(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.

【答案】(1),绘图见解析;(2);(3)

【解析】

(1)由频率分布直方图可得:各小矩形的高之和为0.1,运算可得解;

(2)由频率分布直方图中平均数的求法即可得解;

(3)样本成绩属于第六组的有人,样本成绩属于第八组的有人,则随机抽取2名,

基本事件总数为,他们的分差的绝对值小于10分包含的基本事件个数为,再利用古典概型概率公式运算即可.

解:(1)由频率分布直方图得第七组的频率为:

完成频率分布直方图如下:

(2)用样本数据估计该校的2000名学生这次考试成绩的平均分为:

.

(3)样本成绩属于第六组的有人,样本成绩属于第八组的有人,

从样本成绩属于第六组和第八组的所有学生中随机抽取2名,

基本事件总数

他们的分差的绝对值小于10分包含的基本事件个数

故他们的分差的绝对值小于10分的概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数,.

1)求证:

2)若对于任意恒成立,求的取值范围;

3)若存在,使,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的两个非空子集,如果存在一个函数满足:① ;② 对任意,当时,恒有,那么称这两个集合为“的保序同构”,以下集合对不是“的保序同构”的是( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数满足不等式

命题q:关于不等式对任意的恒成立.

1)若命题为真命题,求实数的取值范围;

2)若“为假命题,为真命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有四座城市,其中的正东方向,且与相距的北偏东方向,且与相距的北偏东方向,且与相距,一架飞机从城市出发以的速度向城市飞行,飞行了,接到命令改变航向,飞向城市,此时飞机距离城市有(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)的周期为,图象的一个对称中心为将函数图象上的所有点的横坐标伸长为原来的2倍(纵坐标不变),再将所有图象向右平移个单位长度后得到函数的图象.

1)求函数的解析式;

2)当,求实数与正整数,使恰有2019个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为,以下结论中不正确的为

A. 15名志愿者身高的极差小于臂展的极差

B. 15名志愿者身高和臂展成正相关关系,

C. 可估计身高为190厘米的人臂展大约为189.65厘米,

D. 身高相差10厘米的两人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面几种推理中是演绎推理的为( )

A. 由金、银、铜、铁可导电,猜想:金属都可导电

B. 猜想数列的通项公式为

C. 半径为的圆的面积,则单位圆的面积

D. 由平面直角坐标系中圆的方程为,推测空间直角坐标系中球的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,其中为常数.

1)证明:

2)是否存在,使得为等差数列?并说明理由.

查看答案和解析>>

同步练习册答案