精英家教网 > 高中数学 > 题目详情
若f(x)与f-1(x)互为反函数,则函数y=f(2x-1)+1是否存在反函数?若存在,试求之.

解:假设y=f(2x-1)+1存在反函数.

∵f(x)存在反函数,

∴f(x)为一一对应函数,

则易知y=f(2x-1)+1也是一一对应函数.

∴y=f(2x-1)+1存在反函数,

则得f(2x-1)=y-1

*f-1[f(2x-1)]=f-1(y-1)

*2x-1=f-1(y-1)

*x=f-1(y-1)+.

则y=f-1(x-1)+是所求函数的反函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列六个命题:
(1)若f(x-1)=f(1-x),则函数f(x)的图象关于直线x=1对称.
(2) y=f(x-1)与y=f(1-x)的图象关于直线x=0对称.
(3)y=f(x+3)的反函数与y=f-1(x+3)是相同的函数.
(4)y=(
1
2
)|x|-sin2x+2009
无最大值也无最小值.
(5)y=
2tanx
1-tan2x
的周期为π
(6)y=sinx(0≤x≤2π)有对称轴两条,对称中心三个.
则正确命题的个数是(  )
A、1个B、2个C、3个D、0个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出下列六个命题:
(1)若f(x-1)=f(1-x),则函数f(x)的图象关于直线x=1对称.
(2) y=f(x-1)与y=f(1-x)的图象关于直线x=0对称.
(3)y=f(x+3)的反函数与y=f-1(x+3)是相同的函数.
(4)y=(
1
2
)|x|-sin2x+2009
无最大值也无最小值.
(5)y=
2tanx
1-tan2x
的周期为π
(6)y=sinx(0≤x≤2π)有对称轴两条,对称中心三个.
则正确命题的个数是(  )
A.1个B.2个C.3个D.0个

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案