【题目】已知函数
的定义域为
,满足
.
(1)若
,求
的值;
(2)若
时,
.
①求
时
的表达式;
②若对任意
,都有
,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知某海滨浴场海浪的高度
(米
是时刻
,单位:时)的函数,记作:
,下表是某日各时刻的浪高数据:
| 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
| 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 |
经长期观测,
的曲线可近似地看成是函数
,
,
的图象.
(
的最小正周期
,振幅
及函数表达式;
(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的
至
之间,那个时间段不对冲浪爱好者开放?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的离心率为
,经过点
过点
的直线l与椭圆C相交于A,B两点,且与椭圆C的左准线交于点N.
求椭圆C的标准方程;
当
时,求直线l的方程;
设
,求
面积的最大值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知PA⊥平面ABCD,且四边形ABCD为矩形,M、N分别是AB、PC的中点.
![]()
(1)求证:MN⊥CD;
(2)若∠PDA=45°,求证:MN⊥平面PCD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校有
、
、
、
四件作品参加航模类作品比赛.已知这四件作品中恰有两件获奖,在结果揭晓前,甲、乙、丙、丁四位同学对这四件参赛作品的获奖情况预测如下.
甲说:“
、
同时获奖.”
乙说:“
、
不可能同时获奖.”
丙说:“
获奖.”
丁说:“
、
至少一件获奖”
如果以上四位同学中有且只有两位同学的预测是正确的,则获奖的作品是( )
A. 作品
与作品
B. 作品
与作品
C. 作品
与作品
D. 作品
与作品![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵
中,
,
,
,则阳马
的外接球的表面积是( )
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/30/1913191114645504/1914064210190336/STEM/70d44ba6321c44a9bcc99e6010bf5643.png]
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx+c(a,b,c∈R)满足:对任意实数x,都有f(x)≥x,且当x∈(1,3)时,有f(x)≤
(x+2)2成立.
(1)证明:f(2)=2;
(2)若f(-2)=0,求f(x)的表达式;
(3)设g(x)=f(x)-
x,x∈[0,+∞),若g(x)图象上的点都位于直线y=
的上方,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位决定投资
元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每
长造价
元,两侧墙砌砖,每
长造价
元,
(1)求该仓库面积
的最大值;
(2)若为了使仓库防雨,需要为仓库做屋顶.顶部每
造价
元,求仓库面积
的最大值,并求出此时正面铁栅应设计为多长?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com