精英家教网 > 高中数学 > 题目详情
是否存在常数a、b、c,使等式(
1
n
)3+(
2
n
)3+(
3
n
)3+…+(
n
n
)3=
an2+bn+c
n
对一切n∈N*都成立?证明你的结论.
分析:先假设存在符合题意的常数a,b,c,再令n=1,n=2,n=3构造三个方程求出a,b,c,再用用数学归纳法证明成立,证明时先证:(1)当n=1时成立.(2)再假设n=k(k≥1)时,成立,即(
1
k
)
3
+(
2
k
)
3
+(
3
k
)
3
+…+(
k
k
)
3
=
ak2+bk+c
k
,再递推到n=k+1时,成立即可.
解答:证明:假设存在符合题意的常数a,b,c,
在等式(
1
n
)
3
+(
2
n
)
3
+(
3
n
)
3
+…+(
n
n
)
3
=
an2+bn+c
n
中,
令n=1,得1=a+b+c     ①
令n=2,得(
1
2
)
3
+(
2
2
)
3
=2a+b+
c
2
   ②
令n=3,得(
1
3
)
3
+(
2
3
)
3
+(
3
3
)
3
=
32+b×3+c
3
=3a+b+
c
3
   ③
由①②③解得a=
1
4
,b=
1
2
,c=
1
4

于是,对于n=1,2,3都有
(
1
n
)
3
+(
2
n
)
3
+(
3
n
)
3
+…+(
n
n
)
3
=
1
4
n2+
1
2
n+
1
4
n
=
(n+1)2
4n
(*)成立.
下面用数学归纳法证明:对于一切正整数n,(*)式都成立.
(1)当n=1时,由上述知,(*)成立.
(2)假设n=k(k≥1)时,(*)成立,
(
1
k
)
3
+(
2
k
)
3
+(
3
k
)
3
+…+(
k
k
)
3
=
(k+1)2
4k

那么当n=k+1时,
(
1
k+1
)
3
+(
2
k+1
)
3
+(
3
k+1
)
3
+…+(
k
k+1
)
3
+(
k+1
k+1
)
3

=(
k
k+1
)
3
×
[(
1
k
)
3
+(
2
k
)
3
+(
3
k
)
3
+…+(
k
k
)
3
]
+(
k+1
k+1
)
3

=(
k
k+1
)
3
×
(k+1)2
4k
+(
k+1
k+1
)
3

=
k2
4(k+1)
+1
=
(k+2)2
4(k+1)
=
[(k+1)+1]2
4(k+1)

由此可知,当n=k+1时,(*)式也成立.
综上所述,当a=
1
4
,b=
1
2
,c=
1
4
时题设的等式对于一切正整数n都成立.
点评:本题主要考查研究存在性问题和数学归纳法,对存在性问题先假设存在,再证明是否符合条件,数学归纳法的关键是递推环节,要符合假设的模型才能成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

是否存在常数a,b使等式1-n+2-(n-1)+3-(n-2)+…+n-1=an(n+b)(n+2)对于任意的n∈N+总成立?若存在,求出来并证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2sin2x+2
3
sinxcosx
x∈[0,
π
2
]

(1)求函数f(x)的最值,及相应的x值;
(2)若|f(x)-a|≤2恒成立,求实数a的取值范围;
(3)若函数g(x)=-2af(x)+2a+b,是否存在常数a,b∈Z,使得g(x)的值域为[-2,4]?若存在,求出相应a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在公差为d(d≠0)的等差数列{an}和公比为q的等比数列{bn}中,已知a1=b1=1,a2=b2,a8=b3
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)是否存在常数a,b,使得对于一切正整数n,都有an=logabn+b成立?若存在,求出常数a和b,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•河东区一模)已知公差不为零的等差数列{xn}和等比数列{yn}中,x1=y1=1,x2=y2,x6=y3.是否存在常数a、b,使得对于一切正整数n,都有xn=logayn+b成立?如果存在,求出a和b的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•虹口区二模)已知数列{an}满足a1=2,an+1=2(
n+1n
2an
(1)求数列{an}的通项公式
(2)设bn=(An2+Bn+C)•2n,是否存在常数A、B、C,使对一切n∈N*,均有an=bn+1-bn成立?若存在,求出常数A、B、C的值,若不存在,说明理由
(3)求证:a1+a2+…+an≤(n2-2n+2)•2n,( n∈N*

查看答案和解析>>

同步练习册答案