精英家教网 > 高中数学 > 题目详情
如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED是边长为2的正方形,且所在平面垂直于平面ABC.
(Ⅰ)求几何体ABCDFE的体积;
(Ⅱ)证明:平面ADE∥平面BCF.
分析:(Ⅰ)取BC的中点O,ED的中点G,由条件证明AO⊥平面BCED,同理FG⊥平面BCED,故所求的几何体的体积等于三棱锥F-BCED的体积的2倍,运算求得结果.
(Ⅱ)先证明AO和FG平行且相等,可得四边形AOFG为平行四边形,可得AG∥OF,再证DE∥BC,利用平面和平面平行的判定定理,证得平面ADE∥平面BCF.
解答:解:(Ⅰ)取BC的中点O,ED的中点G,连接AO,OF,FG,AG.
因为△ABC,△DFE都是等边三角形,故有AO⊥BC,且平面BCED⊥平面ABC,
所以AO⊥平面BCED,同理FG⊥平面BCED,
因为AO=FG=
3
,四边形BCED是边长为2的正方形,
所以,VABCDFE= 2•V F-BCED=
1
3
×4×
3
×2=
8
3
3
.…(6分)
(Ⅱ)由(Ⅰ)知AO∥FG,AO=FG,
所以四边形AOFG为平行四边形,故AG∥OF,
又DE∥BC,所以,平面ADE∥平面BCF.…(12分)
点评:本题主要考查平面和平面平行的判定定理的应用,用分割法求柱体、椎体的体积,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在长方体ABCD-A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-A1C1D1,且这个几何体的体积为10.
(1)求棱A1A的长;
(2)求点D到平面A1BC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示的几何体中,△ABC为正三角形,AE和CD都垂直于平面ABC,且AE=AB=2,CD=1,F为BE的中点.
(1)若点G在AB上,试确定G点位置,使FG∥平面ADE,并加以证明;
(2)求DB与平面ABE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.
(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;
(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中.EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,且AC=BC=BD=2AE=2,M是AB的中点.
(Ⅰ)求证:CM⊥EM;
(Ⅱ)求直线DE与平面EMC所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在如图所示的几何体中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,AC=BC=BD=2AE=2,M是AB的中点. 
(1)求证:CM⊥平面ABDE;
(2)求几何体的体积.

查看答案和解析>>

同步练习册答案