设函数f(x)=lg(x2+ax﹣a﹣1),给出下述命题:
①函数f(x)的值域为R;
②函数f(x)有最小值;
③当a=0时,函数f(x)为偶函数;
④若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围a≥﹣4.
正确的命题是( )
|
| A. | ①③ | B. | ②③ | C. | ②④ | D. | ③④ |
考点:
对数函数的单调性与特殊点.
专题:
阅读型.
分析:
由已知中函数f(x)=lg(x2+ax﹣a﹣1),我们易判断出其真数部分的范围,结合对数函数的性质可判断①与②的真假,由偶函数的定义,可判断③的正误,再由复合函数单调性的判断方法及函数的定义域,可判断④的对错.进而得到结论.
解答:
解:∵u=x2+ax﹣a﹣1的最小值为﹣
(a2+4a+4)≤0
∴①函数f(x)的值域为R为真命题;
但函数f(x)无最小值,故②错误;
当a=0时,易得f(﹣x)=f(x),即③函数f(x)为偶函数正确;
若f(x)在区间[2,+∞)上单调递增,
则![]()
解得a>﹣3,故④错误;
故选A
点评:
本题考查的知识点是对数函数的单调性与特殊点、对数函数的定义和值域、偶函数及复合函数的单调性,是一道函数的综合应用题,其中④中易忽略真数部分必须大于0,而错判为真命题.
科目:高中数学 来源: 题型:
|
| A、(-∞,-1)∪(1,+∞) |
| B、(-∞,-1)∪(0,+∞) |
| C、(-1,0)∪(0,1) |
| D、(-1,0)∪(0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 |
| 3 |
|
| 1 |
| 3 |
| 4 |
| 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com