精英家教网 > 高中数学 > 题目详情

【题目】某中学高一、高二、高三年级的学生人数之比依次为657,防疫站欲对该校学生进行身体健康调查,用分层抽样的方法从该校高中三个年级的学生中抽取容量为n的样本,样本中高三年级的学生有21人,则n等于(

A.35B.45C.54D.63

【答案】C

【解析】

由某中学高一、高二、高三年级的学生人数之比为657,知高三年级学生的数量占总数的,再由分层抽样的方法从三个年级的学生中抽取一个容量为n的样本,高三年级被抽到的人数为21人,能求出n.

解:∵某中学高一、高二、高三年级的学生人数之比为657

∴高三年级学生的数量占总数的

∵分层抽样的方法从三个年级的学生中抽取一个容量为n的样本,若已知高三年级被抽到的人数为21人,

n2154.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.(其中为自然对数的底数)

1)当时,是否存在唯一的的值,使得?并说明理由;

2)若存在,使得对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.(其中常数,是自然对数的底数)

1)若,求上的极大值点;

2)()证明上单调递增;

)求关于的方程上的实数解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是(

A.相邻两个节气晷长减少或增加的量为一尺

B.春分和秋分两个节气的晷长相同

C.立冬的晷长为一丈五寸

D.立春的晷长比立秋的晷长短

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

1)求函数的值域;

2)若不等式对任意恒成立,求实数的取值范围;

3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】{an}是各项都为整数的等差数列,其前n项和为是等比数列,且.

1)求数列的通项公式;

2)设cnlog2b1+log2b2+log2b3++log2bn .

i)求Tn

ii)求证:2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某投资人打算投资甲乙两个项目根据预测乙项目可能的最大盈利率分别为100%50%,可能的最大亏损率分别为30%10%,投资人计划投资金额不超过10万元要求确保可能的资金亏损不超过1.8万元问投资人对甲乙两个项目各投资多少万元才能使可能的盈利最大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着生活节奏的加快以及智能手机的普及,外卖点餐逐渐成为越来越多用户的餐饮消费习惯,由此催生了一批外卖点餐平台.已知某外卖平台的送餐费用与送餐距离有关(该平台只给5千米范围内配送),为调査送餐员的送餐收入,现从该平台随机抽取100名点外卖的用户进行统计,按送餐距离分类统计结果如表:

送餐距离(千米)

01]

12]

23]

34]

45]

频数

15

25

25

20

15

以这100名用户送餐距离位于各区间的频率代替送餐距离位于该区间的概率.

1)若某送餐员一天送餐的总距离为100千米,试估计该送餐员一天的送餐份数;(四舍五入精确到整数,且同一组中的数据用该组区间的中点值为代表).

2)若该外卖平台给送餐员的送餐费用与送餐距离有关,规定2千米内为短距离,每份3元,2千米到4千米为中距离,每份7元,超过4千米为远距离,每份12元.记X为送餐员送一份外卖的收入(单位:元),求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】焦点在x轴上的椭圆C经过点,椭圆C的离心率为是椭圆的左、右焦点,P为椭圆上任意点.

1)求椭圆的标准方程;

2)若点M的中点(O为坐标原点),过M且平行于OP的直线l交椭圆CAB两点,是否存在实数,使得;若存在,请求出的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案