精英家教网 > 高中数学 > 题目详情
精英家教网在四棱锥P-ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,底面ABCD是边长为2的菱形,∠BAD=60°,E是AD的中点,F是PC的中点.
(1)求证:BE⊥平面PAD;
(2)求证:EF∥平面PAB;
(3)求直线EF与平面PBE所成角的余弦值.
分析:(I)由已知利用余弦定理可求BE,利用勾股定理可知BE⊥AE,由平面PAD⊥平面ABCD可证BE⊥平面PAD
(II)证明:由F是PC的中点考虑取PB的中点H,容易证四边形AHFE是平行四边形即EF∥AH,根据线面平行的判定定理可证
(III)由(I)知BC⊥BE,PE⊥BC,可得BC⊥平面PBE,又由(II)知HF∥BC,可得FH⊥平面PBE,则∠FEH是直线EF与平面PBE所成的角,,在Rt△PBE中可求
解答:证明:(I)E是AD中点,连接PE∴AB=2,AE=1
∴BE2=AB2+AE2-2AB•AE•cos∠BAD
=4+1-2×2×1×cos60°=3
∴AE2+BE2=1+3=4=AB2∴BE⊥AE
又平面PAD⊥平面ZBCD,交线AD
∴BE⊥平面PAD
(II)证明:取PB的中点H,连接FH,AH
AE=
1
2
BC  ,AE∥BC
,又HF是△PBC的中位线
HF∥
1
2
BC,HF=
1
2
BC

∴AE∥HF,AE=HF
∴四边形AHFE是平行四边形
∴EF∥AH
又EF?平面PAB,AH?平面PAB
∴AH∥平面PAB
(III)由(I)知BC⊥BE,PE⊥BC
又PE'BE是平面PBE内两相交直线
∴BC⊥平面PBE,又由(II)知HF∥BC
∴FH⊥平面PBE
∴∠FEH是直线EF与平面PBE所成的角
易知BE=PE=
3
,在Rt△PBE中EH=
6
2

tan∠FEH=
6
3
cos∠FEH=
15
5

故直线EF与平面PBE所成角的余弦值为
15
5
点评:本题主要考查了直线与平面平行及直线与平面垂直的判定定理的应用,体现了线面关系与面面关系的相互转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90,PA⊥底面ABCD,且PA=AD=AB=2BC=2,M,N分别为PC、PB的中点.
(1)求证:PB⊥DM;
(2)求BD与平面ADMN所成角的大小;
(3)求二面角B-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4.AB=2,AN⊥PC于点N,M是PD中点.
(1)用空间向量证明:AM⊥MC,平面ABM⊥平面PCD.
(2)求直线CD与平面ACM所成的角的正弦值.
(3)求点N到平面ACM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,O为底面中心,PA⊥平面ABCD,PA=AD=2AB.M是PD的中点
(1)求证:直线MO∥平面PAB;
(2)求证:平面PCD⊥平面ABM.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)求证:AD⊥平面PAB;
(2)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•成都模拟)如图,在四棱锥P-ABCD中,底面ABCD为正方形,且PD⊥平面ABCD,PD=AB=1,EF分别是PB、AD的中点,
(I)证明:EF∥平面PCD;
(Ⅱ)求二面角B-CE-F的大小.

查看答案和解析>>

同步练习册答案