精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= 为偶函数,方程f(x)=m有四个不同的实数解,则实数m的取值范围是(
A.(﹣3,﹣1)
B.(﹣2,﹣1)
C.(﹣1,0)
D.(1,2)

【答案】B
【解析】解:∵函数f(x)= 为偶函数,
∴当x<0时,﹣x>0,
f(x)=f(﹣x)=a(﹣x)2+2x﹣1=ax2+2x﹣1.
∵当x<0时,
f(x)=x2+bx+c,
∴a=1,b=2,c=﹣1.
∴f(x)=
当x=0时,f(x)=﹣1,
当x=1时,f(1)=﹣2,
∵方程f(x)=m有四个不同的实数解,
∴﹣2<m<﹣1.
故选B.
【考点精析】掌握函数奇偶性的性质是解答本题的根本,需要知道在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知复数z=lg(m2﹣2m﹣2)+(m2+3m+2)i,根据以下条件分别求实数m的值或范围.
(1)z是纯虚数;
(2)z对应的点在复平面的第二象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(x+1),g(x)=2lg(2x+t)(t为参数).
(1)写出函数f(x)的定义域和值域;
(2)当x∈[0,1]时,如果f(x)≤g(x),求参数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线E:x2=2py(p>0) 的焦点F作斜率分别为 k1,k2 的两条不同的直线 l1,l2 ,且k1+k2=2 ,l1与E 相交于点A,B, l2与E 相交于点C,D.以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在的直线记为 l .
(1)若k1>0,k2>0 ,证明;
(2)若点M到直线 l 的距离的最小值为 ,求抛物线E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-5:不等式选讲】

已知函数f(x)=|x+1|+|x-3|.

(1)若关于x的不等式f(x)<a有解,求实数a的取值范围:

(2)若关于x的不等式f(x)<a的解集为(b, ),求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知BC是两个定点,|BC|=8,且△ABC的周长等于18,求这个三角形的顶点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】12分如图椭圆的离心率短轴的两个端点分别为B1、B2焦点为F1、F2四边形F1 B1F2 B2的内切圆半径为

1求椭圆C的方程

2过左焦点F1的直线交椭圆于M、N两点交直线于点P试证为定值并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线x+y+m=0与圆x2+y2=4交于不同的两点A,B,O是坐标原点, ,则实数m的取值范围是(
A.[﹣2,2]
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△OAB中,点P为线段AB上的一个动点(不包含端点),且满足

(1)若λ= ,用向量 表示
(2)若| |=4,| |=3,且∠AOB=60°,求 的取值范围.

查看答案和解析>>

同步练习册答案