【题目】定义在
上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的一个上界.已知函数
,
.
(1)若函数
为奇函数,求实数
的值;
(2)在(1)的条件下,求函数
在区间
上的所有上界构成的集合;
(3)若函数
在
上是以3为上界的有界函数,求实数
的取值范围.
【答案】(1)
;(2)上界构成集合为
;(3)实数
的取值范围为
.
【解析】试题分析:(1)
,即
,得
;(2)函数
在区间
上单调递增,所以值域为
,所以所有上界构成集合为
;(3)
在
上恒成立,分离参数得
在
上恒成立,所以
的取值范围为
.
试题解析:
(1)因为函数
为奇函数,
所以
,即
,
即
,得
,而当
时不合题意,故
.
(2)由(1)得:
,
易知,函数
在区间
上单调递增,
所以函数
在区间
上单调递增,
所以函数
在区间
上的值域为
,
所以
,故函数
在区间
上的所有上界构成集合为
.
(3)由题意知,
在
上恒成立.
,
.
∴
在
上恒成立.
∴![]()
设
,
,
,由
得
,
设
,
,
,
所以
在
上递减,
在
上递增,
在
上的最大值为
,
在
上的最小值为
.
所以实数
的取值范围为
.
科目:高中数学 来源: 题型:
【题目】农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21.
(1)在给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;
(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某球星在三分球大赛中命中率为
,假设三分球大赛中总计投出8球,投中一球得3分,投丢一球扣一分,则该球星得分的期望与方差分别为( )
A.16,32
B.8,32
C.8,8
D.32,32
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(x+1)+loga(3﹣x)(a>0且a≠1),且f(1)=2
(1)求a的值及f(x)的定义域;
(2)若不等式f(x)≤c的恒成立,求实数c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若曲线
在点
处的切线斜率为3,且
时
有极值,求函数
的解析式;
(2)在(1)的条件下,求函数
在
上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十二生肖,又叫属相,是中国与十二地支相配以人出生年份的十二种动物,包括鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪。已知在甲、乙、丙、丁、戊、己六人中,甲、乙、丙的属相均是龙,丁、戊的属相均是虎,己的属相是猴,现从这六人中随机选出三人,则所选出的三人的属相互不相同的概率等于( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
且
.
(1)当
时,设集合
,求集合
;
(2)在(1)的条件下,若
,且满足
,求实数
的取值范围;
(3)若对任意的
,存在
,使不等式
恒成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com