已知定点A
(p为常数,p>0),B为x轴负半轴上的一个动点,动点M使得|AM|=|AB|,且线段BM的中点G在y轴上.![]()
(1)求动点M的轨迹C的方程;
(2)设EF为曲线C的一条动弦(EF不垂直于x轴),其垂直平分线与x轴交于点T(4,0),当p=2时,求|EF|的最大值.
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心为平面直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1.
(1)求椭圆C的方程;
(2)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的一点,
=λ,求点M的轨迹方程,并说明轨迹是什么曲线.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
、
为双曲线
:
的左、右焦点,过
作垂直于
轴的直线,在
轴上方交双曲线
于点
,且
.圆
的方程是
.
(1)求双曲线
的方程;
(2)过双曲线
上任意一点
作该双曲线两条渐近线的垂线,垂足分别为
、
,求
的值;
(3)过圆
上任意一点
作圆
的切线
交双曲线
于
、
两点,
中点为
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直线
过点
且与抛物线
交于A、B两点,以弦AB为直径的圆恒过坐标原点O.![]()
(1)求抛物线的标准方程;
(2)设
是直线
上任意一点,求证:直线QA、QM、QB的斜率依次成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知F1,F2分别为椭圆C1:
=1(a>b>0)的上下焦点,其中F1是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
.![]()
(1)试求椭圆C1的方程;
(2)与圆x2+(y+1)2=1相切的直线l:y=k(x+t)(t≠0)交椭圆于A,B两点,若椭圆上一点P满足
,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知平面五边形
关于直线
对称(如图(1)),
,
,将此图形沿
折叠成直二面角,连接
、
得到几何体(如图(2))![]()
(1)证明:
平面
;
(2)求平面
与平面
的所成角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知点
,
是动点,且
的三边所在直线的斜率满足
.
(1)求点
的轨迹
的方程;
(2)若
是轨迹
上异于点
的一个点,且
,直线
与
交于点
,问:是否存在点
,使得
和
的面积满足
?若存在,求出点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知点
和
,圆
是以
为圆心,半径为
的圆,点
是圆
上任意一点,线段
的垂直平分线
和半径
所在的直线交于点
.
(Ⅰ)当点
在圆上运动时,求点
的轨迹方程
;
(Ⅱ)已知
,
是曲线
上的两点,若曲线
上存在点
,满足
(
为坐标原点),求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com