精英家教网 > 高中数学 > 题目详情
已知f(x)=log
1
3
x2+px+q
x2+mx+1
.是否存在实数p、q、m,使f(x)同时满足下列三个条件:
①定义域为R的奇函数;
②在[1,+∞)上是减函数;
③最小值是-1.若存在,求出p、q、m;若不存在,说明理由.
∵f(x)是定义域为R的奇函数,
∴f(0)=0 即log
1
3
q=0,得q=1
又f(-x)=-f(x)
log
1
3
x2-px+1
x2-mx+1
=-log
1
3
x2+px+1
x2+mx+1

x2+1-px
x2+1-mx
=
x2+1+mx
x2+1+px

即(x2+1)2-p2x2=(x2+1)2-m2x2
∴p2=m2
若p=m,则f(x)=0,不合题意.故p=-m≠0
∴f(x)=log
1
3
x2-mx+1
x2+mx+1

由f(x)在[1,+∞)上是减函数,
x≠0时,令g(x)=
x2-mx+1
x2+mx+1
=1-
2mx
x2+mx+1
=1-
2m
x+
1
x
+m

x+
1
x
在[1,+∞)上递增,在(-∞,-1)也递增,只有m>0时,在[1,+∞)上g(x)递增,从而f(x)递减.
即m>0时函数f(x)在(-∞,-1)上为减函数,在(-1,0)上为增函数,在(0,1)上为增函数,在(1,+∞)上为减函数
∴x=-1时,x+
1
x
在(-∞,-1]上取得最大值-2,此时由f(x)的最小值为-1得g(x)的最大值为3.
∴1-
2m
m-2
=3    得m=1,从而p=-1
综上可知,存在p=-1,q=1,m=1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
log
(4x+1)
4
+kx是偶函数,其中x∈R,且k为常数.
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为R上的奇函数,当x>0时,f(x)=3x,那么f(log
 
4
1
2
)的值为
-9
-9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R上的奇函数,且当x>0时有f(x)=log 
110
x

(1)求f(x)的解析式;  
(2)解不等式f(x)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x>0时,f(x)=log 
1
4
x,那么f(-
1
2
)的值是(  )
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=
log(4x+1)4
+kx是偶函数,其中x∈R,且k为常数.
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.

查看答案和解析>>

同步练习册答案