精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-3ax2-9a2x+a3
(Ⅰ)设a=1,求函数f(x)的极值;
(Ⅱ)若a>,且当x∈[1,4a]时,|f′(x)|≤12a恒成立,试确定a的取值范围。
解:(Ⅰ)当a=1时,对函数f(x)求导数,得f′(x)=3x2-6x-9,
令f′(x)=0,解得x1=-1,x2=3,
列表讨论f(x),f′(x)的变化情况:

所以,f(x)的极大值是f(-1)=6,极小值是f(3)=-26;
(Ⅱ)f′(x)=3x2-6ax-9a2的图象是一条开口向上的抛物线,关于x=a对称,
,则f′(x)在[1,4a]上是增函数,
从而f′(x)在[1,4a]上的最小值是f ′(1)=3-6a-9a2,最大值是f′(4a)=15a2
由|f′(x)|≤12a,得-12a≤3x2-6ax-9a2≤12a,
于是有f′(1)=3-6a-9a2≥-12a,且f′(4a)=15a2≤12a,
由f′(1)≥-12a,得
由f′(4a)≤12a,得
所以,即
若a>1,则|f′(a)|=12a2>12a,
故当x∈[1,4a]时,|f′(x)|≤12a不恒成立,
所以使|f′(x)|≤12a(x∈[1,4a])恒成立的a的取值范围是
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案