(本小题14分)已知函数
,曲线
在
处的切线方程为
,若
时,
有极值.
(1)求
的值; (2)求
在区间
上的最大值和最小值.
解: (1)由f(x)=x3+ax2+bx+c,
得f′(x)=3x2+2ax+b,
当x=1时,切线l的斜率为3,可得2a+b=0 ①
当x=
时,y=f(x)有极值,则f′(
)=0,
可得4a+3b+4=0 ②
由①②解得a=2,b=-4.
由于切点的横坐标为x=1,∴f(1)=4.
∴1+a+b+c=4.∴c=5………………………………….6分
(2)由(1)可得f(x)=x3+2x2-4x+5,
∴f′(x)=3x2+4x-4,
令f′(x)=0,得x=-2,x=
.
当x变化时,y,y′的取值及变化如下表:
|
x |
-3 |
(-3,-2) |
-2 |
(-2, |
|
( |
1 |
|
|
|
+ |
0 |
- |
0 |
+ |
|
|
y |
8 |
单调增递 |
13 |
|
|
单调递增 |
4 |
∴ y=f(x)在[-3,1]上的最大值为13,最小值为
…………………….14分
【解析】略
科目:高中数学 来源:2012-2013学年北京市高三第四次月考文科数学试卷(解析版) 题型:解答题
(本小题14分)
已知等比数列
满足
,且
是
,
的等差中项.
(Ⅰ)求数列
的通项公式;
(Ⅱ)若
,
,求使
成立的正整数
的最小值.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年四川省成都市高新区高三2月月考理科数学试卷(解析版 题型:解答题
(本小题14分)已知函数
,设
。
(Ⅰ)求F(x)的单调区间;
(Ⅱ)若以
图象上任意一点
为切点的切线的斜率
恒成立,求实数
的最小值。
(Ⅲ)是否存在实数
,使得函数
的图象与
的图象恰好有四个不同的交点?若存在,求出
的取值范围,若不存在,说名理由。
查看答案和解析>>
科目:高中数学 来源:2011-2012学年陕西省高三上学期月考理科数学 题型:解答题
(本小题14分)已知函数
的图像与函数
的图像关于点
对称
(1)求函数
的解析式;
(2)若
,
在区间
上的值不小于6,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年四川省高三2月月考数学理卷 题型:解答题
(本小题14分)
已知函数
的图像在[a,b]上连续不断,定义:
,
,其中
表示函数
在D上的最小值,
表示函数
在D上的最大值,若存在最小正整数k,使得
对任意的
成立,则称函数
为
上的“k阶收缩函数”
(1)若
,试写出
,
的表达式;
(2)已知函数
试判断
是否为[-1,4]上的“k阶收缩函数”,
如果是,求出对应的k,如果不是,请说明理由;
已知
,函数
是[0,b]上的2阶收缩函数,求b的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com