分析 (1)利用同角三角函数基本关系式、“弦化切”即可得出;
(2)由tanα=3,可得sinαcosα=$\frac{sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{tanα}{ta{n}^{2}α+1}$.又π<α<$\frac{3π}{2}$,可得$\frac{5π}{4}<α<\frac{3π}{2}$,因此cosα-sinα>0,于是cosα-sinα=$\sqrt{(cosα-sinα)^{2}}$=$\sqrt{1-2sinαcosα}$,即可得出.
解答 解:(1)∵tanα=3.
∴$\frac{sinα-4cosα}{5sinα+2cosα}$=$\frac{tanα-4}{5tanα+2}$=$\frac{3-4}{5×3+2}$=$-\frac{1}{17}$.
sin2α十2sinαcosα=$\frac{si{n}^{2}α+2sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{ta{n}^{2}α+2tanα}{ta{n}^{2}α+1}$=$\frac{{3}^{2}+2×3}{{3}^{2}+1}$=$\frac{3}{2}$;
(2)∵tanα=3,∴sinαcosα=$\frac{sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{tanα}{ta{n}^{2}α+1}$=$\frac{3}{10}$.
∵π<α<$\frac{3π}{2}$,∴$\frac{5π}{4}<α<\frac{3π}{2}$,
∴cosα-sinα>0,
∴cosα-sinα=$\sqrt{(cosα-sinα)^{2}}$=$\sqrt{1-2sinαcosα}$=$\sqrt{1-2×\frac{3}{10}}$=$\frac{\sqrt{10}}{5}$.
点评 本题考查了同角三角函数基本关系式、“弦化切”方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 100 | B. | 3000 | C. | 101 | D. | 3001 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 18 | B. | 19 | C. | 20 | D. | 21 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com