精英家教网 > 高中数学 > 题目详情
如图,某人在塔的正东方向上的C处在与塔垂直的水平面内沿南偏西60°的方向以每小时6千米的速度步行了1分钟以后,在点D处望见塔的底端B在东北方向上,已知沿途塔的仰角∠AEB=α,α的最大值为60°.
(1)求该人沿南偏西60°的方向走到仰角α最大时,走了几分钟;
(2)求塔的高AB.
分析:(1)要顺利求解本题,其关键是确定沿AB测塔的仰角,其最大仰角在何处达到,该处与塔底间的距离是多少?
(2)求得该距离,则在相应的直角三角形中,就不难求得塔高.
解答:解:(1)依题意知在△DBC中∠BCD=30°,∠DBC=180°-45°=135°
CD=6000×
1
60
=100(m),∠D=180°-135°-30°=15°,------(3分)
由正弦定理得
CD
sin∠DBC
=
BC
sin∠D

BC=
CD•sin∠D
sin∠DBC
=
100×sin15°
sin135°

=
100×
6
-
2
4
2
2
=
50(
6
-
2
)
2
=50(
3
-1)
(m)-----(6分)
在Rt△ABE中,tanα=
AB
BE

∵AB为定长∴当BE的长最小时,α取最大值60°,这时BE⊥CD----------------(8分)
当BE⊥CD时,在Rt△BEC中EC=BC•cos∠BCE=50(
3
-1)•
3
2
=25(3-
3
)
(m),--------------------(9分)
设该人沿南偏西60°的方向走到仰角α最大时,走了t分钟,
t=
EC
6000
×60=
25(3-
3
)
6000
×60
=
3-
3
4
(分钟)----------------------------------(10分)
(2)由(1)知当α取得最大值60°时,BE⊥CD,在Rt△BEC中,BE=BC•sin∠BCD
∴AB=BE•tan60°=BC•sin∠BCD•tan60°=50(
3
-1)•
1
2
3
=25(3-
3
)
(m)
即所求塔高为25(3-
3
)
m.----------------------------------------------(14分)
点评:解本题的关键是确定何处测得最大仰角,然后转化成解三角形问题来解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,某人在塔AB(塔垂直于地面)的正东C点沿着南偏西60°的方向前进80米后到达D点,望见塔在东北方向,若沿途测得塔的最大仰角为30°(观测点为E),求塔高(sin15°=
6
-
2
4
)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年山东省济宁一中高三第四次反馈练习数学试卷(理科)(解析版) 题型:解答题

如图,某人在塔AB(塔垂直于地面)的正东C点沿着南偏西60°的方向前进80米后到达D点,望见塔在东北方向,若沿途测得塔的最大仰角为30°(观测点为E),求塔高

查看答案和解析>>

同步练习册答案