【题目】某公园有一个直角三角形地块,现计划把它改造成一块矩形和两块三角形区域.如图,矩形区域用于娱乐城设施的建设,三角形BCD区域用于种植甲种观赏花卉,三角形CAE区域用于种植乙种观赏花卉.已知OA=4千米,OB=3千米,∠AOB=90°,甲种花卉每平方千米造价1万元,乙种花卉每平方千米造价4万元,设OE=x千米.试建立种植花卉的总造价为y(单位:万元)关于x的函数关系式;求x为何值时,种植花卉的总造价最小,并求出总造价. ![]()
科目:高中数学 来源: 题型:
【题目】已知椭圆
,定义椭圆
上的点
的“伴随点”为
.
(1)求椭圆
上的点
的“伴随点”
的轨迹方程;
(2)如果椭圆
上的点
的“伴随点”为
,对于椭圆
上的任意点
及它的“伴随点”
,求
的取值范围;
(3)当
,
时,直线
交椭圆
于
,
两点,若点
,
的“伴随点”分别是
,
,且以
为直径的圆经过坐标原点
,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知⊙
:
与⊙
:
,以
,
分别为左右焦点的椭圆
:
经过两圆的交点。
(Ⅰ)求椭圆
的方程;
![]()
(Ⅱ)
、
是椭圆
上的两点,若直线
与
的斜率之积为
,试问
的面积是否为定值?若是,求出这个定值;若不是,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|﹣1≤x≤10},集合B={x|2x﹣6≥0}.
求R(A∪B);
已知C={x|a<x<a+1},且CA,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校用简单随机抽样方法抽取了30名同学,对其每月平均课外阅读时间(单位:小时)进行调查,茎叶图如图:
![]()
若将月均课外阅读时间不低于30小时的学生称为“读书迷”.
(1)将频率视为概率,估计该校900名学生中“读书迷”有多少人?
(2)从已抽取的7名“读书迷”中随机抽取男、女“读书迷”各1人,参加读书日宣传活动.
(i)共有多少种不同的抽取方法?
(ii)求抽取的男、女两位“读书迷”月均读书时间相差不超过2小时的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,点
的极坐标是
,曲线
的极坐标方程为
.以极点为坐标原点,极轴为
轴的正半轴建立平面直角坐标系,斜率为
的直线
经过点
.
(1)写出直线
的参数方程和曲线
的直角坐标方程;
(2)若直线
和曲线
相交于两点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知幂函数f(x)=(﹣2m2+m+2)xm+1为偶函数.
(1)求f(x)的解析式;
(2)若函数y=f(x)﹣2(a﹣1)x+1在区间(2,3)上为单调函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
,向量
,函数f(x)=
.
(1)求函数f(x)的单调递增区间;
(2)将函数y=f(x)的图象上所有点向右平行移动
个单位长度,得函数y=g(x)的图象,求函数y=g(x)在区间[0,π]上的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com