【题目】如图,菱形
的边长为
,
,
,将菱形
沿对角线
折起,得到三棱锥
,点
是棱
的中点,
.
![]()
(
)求证:
平面
.
(
)求证:平面
平面
.
(
)求三棱锥
的体积.
科目:高中数学 来源: 题型:
【题目】某校学生研究学习小组发现,学生上课的注意力指标随着听课时间的变化而变化,老师讲课开始时,学生的兴趣激增;接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散.设
表示学生注意力指标.
该小组发现
随时间
(分钟)的变化规律(
越大,表明学生的注意力越集中)如下:
(
且
).
若上课后第
分钟时的注意力指标为
,回答下列问题:
(
)求
的值.
(
)上课后第
分钟和下课前
分钟比较,哪个时间注意力更集中?并请说明理由.
(
)在一节课中,学生的注意力指标至少达到
的时间能保持多长?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
的右准线
的方程为
,焦距为
.
(1)求椭圆
的方程;
(2)过定点
作直线
与椭圆
交于点
(异于椭圆
的左、右顶点
)两点,设直线
与直线
相交于点
.
①若
,试求点
的坐标;
②求证:点
始终在一条直线上.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=Asin(ωx+φ)(A≠0,ω>0,
<φ<
)的图象关于直线
对称,它的最小正周期为π,则( )
A. f(x)的图象过点(0,
) B. f(x)在
上是减函数
C. f(x)的一个对称中心是
D. f(x)的一个对称中心是![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合,且两个坐标系的单位长度相同.已知直线l的参数方程为
(t为参数),曲线C的极坐标方程为
.
(Ⅰ)若直线l的斜率为-1,求直线l与曲线C交点的极坐标;
(Ⅱ)若直线l与曲线C相交弦长为
,求直线l的参数方程(标准形式).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
在函数
的图象上,数列
的前
项和为
,数列
的前
项和为
,且
是
与
的等差中项.
(
)求数列
的通项公式.
(
)设
,数列
满足
,
.求数列
的前
项和
.
(
)在(
)的条件下,设
是定义在正整数集上的函数,对于任意的正整数
,
,恒有
成立,且
(
为常数,
),试判断数列
是否为等差数列,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某次足球比赛共12支球队参加,分三个阶段进行.
(1)小组赛:经抽签分成甲、乙两组,每组6队进行单循环比赛,以积分及净剩球数取前两名;
(2)半决赛:甲组第一名与乙组第二名,乙组第一名与甲组第二名作主客场交叉淘汰赛(每两队主客场各赛一场)决出胜者;
(3)决赛:两个胜队参加决赛一场,决出胜负.
问全程赛程共需比赛多少场?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com