【题目】如图四边形ABCD为菱形,G为AC与BD交点,
,
(I)证明:平面
平面
;
(II)若
,
三棱锥
的体积为
,求该三棱锥的侧面积.
![]()
【答案】(1)见解析(2)3+2![]()
【解析】试题分析:(Ⅰ)由四边形ABCD为菱形知AC
BD,由BE
平面ABCD知AC
BE,由线面垂直判定定理知AC
平面BED,由面面垂直的判定定理知平面
平面
;(Ⅱ)设AB=
,通过解直角三角形将AG、GC、GB、GD用x表示出来,在
AEC中,用x表示EG,在
EBG中,用x表示EB,根据条件三棱锥
的体积为
求出x,即可求出三棱锥
的侧面积.
试题解析:(Ⅰ)因为四边形ABCD为菱形,所以AC
BD,
因为BE
平面ABCD,所以AC
BE,故AC
平面BED.
又AC
平面AEC,所以平面AEC
平面BED
(Ⅱ)设AB=
,在菱形ABCD中,由
ABC=120°,可得AG=GC=
,GB=GD=
.
因为AE
EC,所以在
AEC中,可得EG=
.
由BE
平面ABCD,知
EBG为直角三角形,可得BE=
.
由已知得,三棱锥E-ACD的体积
.故
=2
从而可得AE=EC=ED=
.
所以
EAC的面积为3,
EAD的面积与
ECD的面积均为
.
故三棱锥E-ACD的侧面积为
.
科目:高中数学 来源: 题型:
【题目】为了解学生的课外阅读时间情况,某学校随机抽取了50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如下表所示:
阅读时间 |
|
|
|
|
|
|
人数 | 8 | 10 | 12 | 11 | 7 | 2 |
若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作成如图所示的等高条形图.
![]()
(1)根据抽样结果估计该校学生的每天平均阅读时间(同一组数据用该区间的终点值作为代表);
(2)根据已知条件完成下面的
列联表,并判断是否有99%的把握认为“阅读达人”跟性别有关?
男生 | 女生 | 总计 | |
阅读达人 | |||
非阅读达人 | |||
总计 |
附:参考公式
,其中
.
临界值表:
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果某地的财政收入
与支出
满足线性回归方程
(单位:亿元),其中
,如果今年该地区财政收入10亿元,则年支出预计不会超过( )
A. 10.5亿 B. 10亿 C. 9.5亿 D. 9亿
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查观众对电视剧《风筝》的喜爱程度,某电视台举办了一次现场调查活动.在参加此活动的甲、乙两地大量观众中,各随机抽取了8名观众对该电视剧评分做调查(满分100分),被抽取的观众的评分结果如图所示.
![]()
(1)从甲地抽取的8名观众和乙地抽取的8名观众中分别各选取一人,在已知两人中至少一人评分不低于90分的条件下,求乙地被选取的观众评分低于90分的概率。
(2)从甲地抽取出来的8名观众中选取1人,从乙地抽取出来的8名观众中选取2人去参加代表大会,记选取的3人中评分不低于90分的人数为
,求
的分布列与期望。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列三个命题:
①若一个球的半径缩小到原来的
,则其体积缩小到原来的
;
②若两组数据的平均数相等,则它们的标准差也相等;
③直线x+y+1=0与圆
相切.
其中真命题的序号是( )
A.①②③
B.①②
C.①③
D.②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知首项为
的等比数列{an}不是递减数列,其前n项和为Sn(n∈N*),且S3+a3 , S5+a5 , S4+a4成等差数列.
(1)求数列{an}的通项公式;
(2)设
,求数列{Tn}的最大项的值与最小项的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1:x-2y+3=0与直线l2:2x+3y-8=0的交点为M,
(1)求过点M且到点P(0,4)的距离为2的直线l的方程;
(2)求过点M且与直线l3:x+3y+1=0平行的直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com