动圆M过定点A(-
,0),且与定圆A´:(x-
)2+y2=12相切.
(1)求动圆圆心M的轨迹C的方程;
(2)过点P(0,2)的直线l与轨迹C交于不同的两点E、F,求
的取值范围.
(1)![]()
(2)![]()
解析试题分析:解:(1)A´(
,0),依题意有|MA´|+
=2
1分
|MA´|+|MA|=2
>2
3分
∴点M的轨迹是以A´、A为焦点,2
为长轴上的椭圆, 4分
∵a=
,c=
∴b2=1. 5分
因此点M的轨迹方程为
6分
(2)设l的方程为x=k(y-2)代入
,消去x得:
(k2+3)y2-4k2y+4k2-3=0 8分
由△>0得16k4-(4k2-3)(k2+3)>0
0≤k2<1 9分
设E(x1,y1),F(x2,y2),则y1+y2=
,y1y2=
10分
又
=(x1,y1-2),
=(x2,y2-2)
∴
·
=x1x2+(y1-2)(y2-2)=k(y1-2)·k (y2-2) +(y1-2)(y2-2)=(1+k2)
=
12分
∵0≤k2<1 ∴3≤k2+3<4 13分
∴
·
∈
14分
考点:向量的数量积以及直线与椭圆的位置关系
点评:主要是考查了椭圆方程,直线与椭圆的位置关系的运用,属于基础题。
科目:高中数学 来源: 题型:解答题
已知双曲线C:
(a>0,b>0)的左、右焦点分别为
、
,离心率为3,直线y=2与C的两个交点间的距离为
.
(Ⅰ)求a,b;
(Ⅱ)设过
的直线l与C的左、右两支分别交于A、B两点,且
,证明:
、
、
成等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在原点的椭圆C:
的一个焦点为
,
为椭圆C上一点,
的面积为
.
(1)求椭圆C的方程;
(2)是否存在平行于OM的直线
,使得直线
与椭圆C相交于A,B两点,且以线段AB为直径的圆恰好经过原点?若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
和圆
:
,过椭圆上一点P引圆O的两条切线,切点分别为A,B. ![]()
(1)(ⅰ)若圆O过椭圆的两个焦点,求椭圆的离心率e的值;
(ⅱ)若椭圆上存在点P,使得
,求椭圆离心率e的取值范围;
(2)设直线AB与x轴、y轴分别交于点M,N,问当点P在椭圆上运动时,
是否为定值?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,以坐标原点
为几点,
轴的正半轴为极轴建立极坐标系.已知直线
上两点
的极坐标分别为
,圆
的参数方程
(
为参数).
(Ⅰ)设
为线段
的中点,求直线
的平面直角坐标方程;
(Ⅱ)判断直线
与圆
的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动点
到点
的距离与到直线
的距离之比为定值
,记
的轨迹为
.![]()
(1)求
的方程,并画出
的简图;
(2)点
是圆
上第一象限内的任意一点,过
作圆的切线交轨迹
于
,
两点.
(i)证明:
;
(ii)求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于
轴(垂足为T),与抛物线交于不同的两点P、Q,且
.
(Ⅰ)求点T的横坐标
;
(Ⅱ)若椭圆C以F1,F2为焦点,且F1,F2及椭圆短轴的一个端点围成的三角形面积为1.
① 求椭圆C的标准方程;
② 过点F2作直线l与椭圆C交于A,B两点,设
,若
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com